
1

last time
coverage-guided fuzzing

random tests based on set of base tests
new path taken: add test to set of base tests

complete (finds any problem) v sound (problems found really
problems)

static analysis
abstract interpretation: summary values e.g. allocated/freed
approximations to avoid analyzing complex if statements, etc.

2

checking use-after-free (3)
void someFunction() {

int *quux = malloc(sizeof(int));
...
// A
do {

// B
...
if (anotherFunction()) {

free(quux);
// C

}
...
// D

} while (complexFunction());
...
// E
*quux++;
...

}

A: allocated

B (from allocated): allocated

C (from allocated): quux: freed

D (from freed): freed

E (from freed): USE-AFTER-FREE

D (from allocated): allocated

E (from allocated): ok

B (from freed): freed

C (from freed): DOUBLE-FREE

3

checking use-after-free (3)
void someFunction() {

int *quux = malloc(sizeof(int));
...
// A
do {

// B
...
if (anotherFunction()) {

free(quux);
// C

}
...
// D

} while (complexFunction());
...
// E
*quux++;
...

}

A: allocated

B (from allocated): allocated

C (from allocated): quux: freed

D (from freed): freed

E (from freed): USE-AFTER-FREE

D (from allocated): allocated

E (from allocated): ok

B (from freed): freed

C (from freed): DOUBLE-FREE

3

checking use-after-free (3)
void someFunction() {

int *quux = malloc(sizeof(int));
...
// A
do {

// B
...
if (anotherFunction()) {

free(quux);
// C

}
...
// D

} while (complexFunction());
...
// E
*quux++;
...

}

A: allocated

B (from allocated): allocated

C (from allocated): quux: freed

D (from freed): freed

E (from freed): USE-AFTER-FREE

D (from allocated): allocated

E (from allocated): ok

B (from freed): freed

C (from freed): DOUBLE-FREE

3

checking use-after-free (3)
void someFunction() {

int *quux = malloc(sizeof(int));
...
// A
do {

// B
...
if (anotherFunction()) {

free(quux);
// C

}
...
// D

} while (complexFunction());
...
// E
*quux++;
...

}

A: allocated

B (from allocated): allocated

C (from allocated): quux: freed

D (from freed): freed

E (from freed): USE-AFTER-FREE

D (from allocated): allocated

E (from allocated): ok

B (from freed): freed

C (from freed): DOUBLE-FREE

3

checking use-after-free (3)
void someFunction() {

int *quux = malloc(sizeof(int));
...
// A
do {

// B
...
if (anotherFunction()) {

free(quux);
// C

}
...
// D

} while (complexFunction());
...
// E
*quux++;
...

}

A: allocated

B (from allocated): allocated

C (from allocated): quux: freed

D (from freed): freed

E (from freed): USE-AFTER-FREE

D (from allocated): allocated

E (from allocated): ok

B (from freed): freed

C (from freed): DOUBLE-FREE

3

checking use-after-free (3)
void someFunction() {

int *quux = malloc(sizeof(int));
...
// A
do {

// B
...
if (anotherFunction()) {

free(quux);
// C

}
...
// D

} while (complexFunction());
...
// E
*quux++;
...

}

A: allocated

B (from allocated): allocated

C (from allocated): quux: freed

D (from freed): freed

E (from freed): USE-AFTER-FREE

D (from allocated): allocated

E (from allocated): ok

B (from freed): freed

C (from freed): DOUBLE-FREE

3

result from clang’s scan-build

4

checking for array bounds
can try to apply same technique to array bounds

but much more complicated/more likely to have false
positives/negatives

for each array or pointer track:
minimum number of elements before/after what it points to

for each integer track:
minimum bound
maximum bound

similar analysis looking at paths?

5

checking array bounds (1)
int array[100];
void someFunction(int foo) {

// A
if (foo > 100) {

return;
}
// B
array[foo] += 1;

}

A: foo: [− inf, + inf]; array: indices [0, 99]

B: foo: [− inf, +100]; array: indices [0, 99]

give warning about foo == 100? probably bug!
give warning about foo < 0? maybe??

6

checking array bounds (1)
int array[100];
void someFunction(int foo) {

// A
if (foo > 100) {

return;
}
// B
array[foo] += 1;

}

A: foo: [− inf, + inf]; array: indices [0, 99]

B: foo: [− inf, +100]; array: indices [0, 99]

give warning about foo == 100? probably bug!
give warning about foo < 0? maybe??

6

checking array bounds (2)
int array[100];
void someFunction(int foo, bool bar) {

int *p = array;
// A
p += 50;
// B
if (foo >= 50 || foo < 0) abort();
// C
if (bar) {

foo = −foo;
}
// D
p[foo] = 1;

}

A: p: indices [0, 99]; foo: [− inf, + inf]

B: p: indices [-50, 49]; foo: [− inf, + inf]

C: p: indices [-50, 49]; foo: [0, 50]

D (bar true): p: indices: [-50, 49]; foo: [-50, 0]

D (bar false): p: indices: [-50, 49]; foo: [0, 50]

warn about possible out-of-bounds?

7

checking array bounds (2)
int array[100];
void someFunction(int foo, bool bar) {

int *p = array;
// A
p += 50;
// B
if (foo >= 50 || foo < 0) abort();
// C
if (bar) {

foo = −foo;
}
// D
p[foo] = 1;

}

A: p: indices [0, 99]; foo: [− inf, + inf]

B: p: indices [-50, 49]; foo: [− inf, + inf]

C: p: indices [-50, 49]; foo: [0, 50]

D (bar true): p: indices: [-50, 49]; foo: [-50, 0]

D (bar false): p: indices: [-50, 49]; foo: [0, 50]

warn about possible out-of-bounds?

7

common bug patterns
effectively detecting things like “arrays are in bounds”
or “values aren’t used after being freed”
is not very reliable for large programs

(but analysis tools true and are getting better)

but static analysis tools shine for common bug patterns

8

patterns clang’s analyzer knows
struct foo *p = malloc(sizeof(struct foo*)); // meant struct foo?
long *p = malloc(16 * sizeof(int)); // meant sizeof(long)?

strncat(foo, bar, sizeof(foo));

int *global;
int *foo() {

int x;
int *p = &x;
...
global = p; // putting pointer to stack in global
return p; // returning pointer to stack

}

9

more suspect patterns
SpotBugs: Java static analysis tool
// pattern: connecting to database with empty password:
connection = DriverManager.getConnection(

"jdbc:hsqldb:hsql://db.example.com/xdb" /* database ID */,
"sa" /* username */, "" /* password */);

// pattern: Sql.hasResult()'s second argument isn't a constant
Sql.hasResult(c, "SELECT 1 FROM myTable WHERE code='"+code+"'");

// pattern: new FileReader's argument comes from request
HttpRequest request = ...;
String path = request.getParameter("path");
BufferedReader r = new BufferedReader(

new FileReader("data/" + path));

10

preview: information flow
really common pattern we want to find:
data from somewhere gets to dangerous place

pointer to stack escapes function
input makes it to SQL query, file name

we’ll talk about it specially next

11

static analysis practicality
good at finding some kinds of bugs

array out-of-bounds probably not one — complicated tracking needed

excellent for “bug patterns” like:
struct Foo* foo;
...
foo = malloc(sizeof(struct Bar));

false positive rates are often 20+% or more

some tools assume lots of annotations

not limited to C-like languages

12

static analysis tools
Coverity, Fortify — commerical static analysis tools

Splint — unmaintained?
written by David Evans and his research group in the late 90s/early 00s

FindBugs (Java)

clang-analyzer — part of Clang compiler

Microsoft’s Static Driver Verifier — required for Windows drivers:
mostly checks correct usage of Windows APIs

13

information flow
so far: static analysis concerned with control flow

often, we’re really worried about how data moves

many applications:
does an array index depend on user input?
does an SQL query depend on user input?
does data sent over network depend on phone number?

…

can do this statically (potential dependencies)
or dynamically (actual dependencies as program runs)

14

information flow graph (1a)
def f(a, b, c):

desc = 'a={},b={}'.format(a, b)
if b > 10:

y = a
else:

y = c
w = y + a
pair = (w, c)
desc = desc + \

',pair={}'.format(pair)
print(desc)
return y

a

'a={},b={}'.format(a,b) y

y+a

desc (v1)

b

desc + ...

returned

c

pair

w

',pair={}'.format(pair)

desc (v2)

printed

15

information flow graph (1b)

ex: does returned value depend on a, b, c?

ex: does value of pair depend on a, b, c?

ex: does printed value depend on a, b, c?

a

'a={},b={}'.format(a,b) y

y+a

desc (v1)

b

desc + ...

returned

c

pair

w

',pair={}'.format(pair)

desc (v2)

printed

16

information flow graph (1b)
ex: does returned value depend on a, b, c?

ex: does value of pair depend on a, b, c?

ex: does printed value depend on a, b, c?

a

'a={},b={}'.format(a,b) y

y+a

desc (v1)

b

desc + ...

returned

c

pair

w

',pair={}'.format(pair)

desc (v2)

printed

16

information flow and control flow
def f(a, b, c):

if b > 10:
y = a

else:
y = c

return y

Q: which is better …
if we’re trying to see if user input makes it to SQL query?
if we’re trying to determine if private info goes out over network?

a

y

return

c ba

y

return

b c

17

sources and sinks
needed choose sources (so far: function arguments)
and sinks (so far: print, return)

choice depends on application

SQL injection:
sources: input from network
sinks: SQL query functions

private info leak:
sources: private data: phone number, message history, email, …
sinks: network output

18

static info flow challenges (1)
Python example
def stash(a):

global y
y = a

x = [0,1,2,3]
stash(x)
x[2] = input()
print(y[2])

// C example
int *y;
void stash(int *a) {

y = a;
}
int main() {

int x[3];
stash(x);
y[2] = GetInput();
printf("%d\n",x[2]);

}

same points-to problem with static analysis
need to realize that x[2] and y[2] are the same!

even if assignment to/usage of y is more cleverly hidden

can fix this with dynamic approach: monitor running program
19

static info flow challenges (2)
def retrieve(flag):

global the_default
if flag:

value = input()
else:

value = the_default
value = process(value)
if not flag:

print("base on default: ",value)
return value

retrieve(True)
retrieve(False)

input can’t make it to print here

…but need path-sensitive analysis to tell

can fix this we dynamic approach: monitor running program
20

static info flow challenges (3)
x = int(input())
if x == 0:

print(0)
elif x == 1:

print(1)
elif ...

does input make it to output?

should we try to detect this?
probably depends on intended use of analysis

harder to fix this issue

21

taint tracking idea
so far: looking at how information makes it from source to sink
statically

not actually running the program

can do this as programs are running, trigger error

dynamic taint tracking

22

taint tracking implementations
for the programmer:

supported as optional langauge feature — Perl, Ruby
doesn’t seem to have gotten wide adoption?

for the malware analyst/user
as part of a custom x86 VM (whole system, on machine code)
as part of a custom Android system
…

23

taint tracking in Perl (1)
#! perl -T
-T: enable taint tracking
use warnings; use strict;
$ENV{PATH} = '/usr/bin:/bin';

print "Enter name: ";
my $name = readline(STDIN);
my $dir = $name . "-dir";

system("mkdir $dir");

“Insecure dependency in system while running with -T switch at
perltaint.pl line 10, <STDIN> line 1.”

24

taint tracking in Perl (2)
#! perl -T
-T: enable taint tracking
use warnings; use strict;
$ENV{PATH} = '/usr/bin:/bin';

print "Enter name: ";
my $name = readline(STDIN);
keep $name only if its all alphanumeric
this marks $name as untainted
($name) = $name =~ /^([a-zA-Z0-9]+)$/;
my $dir = $name . "-dir";

system("mkdir $name");

25

taint tracking assembly?

26

high-level overview
lookup table for each register and byte of memory:

where did this value come from?

add %r9, (%r8):
memory-taint-table[register-values[R8]] =

register-taint-table[R9]

also similar for virtual disk, network, …

custom VM: all applications and the OS run with taint tracking

27

Panaroma special cases
xor %eax, %eax: special case: remove taint from %eax

Windows keyboard input did something like:
keycode = GetFromKeyboard();
switch (keycode) {
case KEYCODE_A: return 'a';
case KEYCODE_B: return 'b';
...
}

28

taint tracking for malware analysis
uses proposed by Panaroma authors:

keypresses → network packets

network packets → malware outputs

browser history → network packets

29

defeating ASM-based checking
if a malware author wanted to defeat this taint checking, what ideas
seem promising for confusing the analysis?

A. timing arithmetic operations to see if the machine is unusually slow
B. computing the hash of the malware’s machine code and comparing it
to a known value
C. changing x = y to
switch (x) { case 1: y = 1; break; case 2: ...}
D. changing x = y to x = z + y; x = x − z;

30

Tigress’s transformation

31

example: TaintDroid

32

TaintDroid instrumentation

33

TaintDroid resutls

34

TaintDroid and performance
modifying Dalvik (∼ Java) VM allows very good performance

could do this sort of tracking on a “live” system

35

logistics note
next few planned topics:

(next) systems programming languages with memory safety (Rust
as example)
(after) sandboxing / privilege separation

running code without trusting it as much

hardware support for memory safety + CFI (memory safety
mitigation)

concurrency bugs / time of check to time of use

could make adjustments if there are topics people especially want
36

why are people still using C/C++?
Python, Java, …are great languages

why are people using C, C++, etc.?
which seem horrible for security?

history + good support
lots of libraries in C, C++, …

“zero overhead”
safe languages don’t make it easy to get “close to the machine”
e.g. garbage collection overhead
e.g. array checking overhead

no language VM — easier to distribute
37

why are people still using C/C++?
Python, Java, …are great languages

why are people using C, C++, etc.?
which seem horrible for security?

history + good support
lots of libraries in C, C++, …

“zero overhead”
safe languages don’t make it easy to get “close to the machine”
e.g. garbage collection overhead
e.g. array checking overhead

no language VM — easier to distribute
37

safety rules + escape hatch
idea: can avoid out-of-bounds, etc. with safety rules

…but safety rules don’t allow us to do some things fast

so: have “escape hatch” to avoid safety checks in those cases

hope: code that uses escape hatch can be tightly checked
good target for expensive program analysis

38

Java: unofficial escape hatch
Oracle JDK and OpenJDK come with a class called
com.sun.Unsafe

Example methods:
public long allocateMemory(long size);

// returns pointer value
public void freeMemory(long address);
public long getLong(long address);
public void putLong(long address, long x);

can be used to, e.g., write “fast” IntArray class

39

so, if Java has escape hatch…
why do people not want to write
their performance-sensitive programs in Java?

hard to integrate code that uses escape hatch with normal Java
code

hard to efficiently avoid dangling pointers when using escape hatch
Is it safe to freeMemory from my FastIntArray class?

slow to pass garbage collected references to/from C/assembly code

hard to avoid using garbage collector
garbage collector performance can be variable

40

Rust philosophy
default rules that only allow ‘safe’ things

no dangling pointers
no out-of-bounds accesses

escape hatch to use “raw” pointers or unchecked libraries

escape hatch can be used to write useful libraries
e.g. Vector/ArrayList equivalent
expose interface that is safe

41

backup slides

42

static analysis
need to avoid exploring way too many paths

clang-analyzer: only a procedure at a time
other analyzers: some way of pruning paths

need to avoid false positives
probably can’t always assume every if can be true/false
one idea: apply symbolic-execution like techniques to prune
clang-analyzer: limited by being procedure-at-a-time

43

	example: model for use-after-free, with loop
	example: model for array bounds
	analysis for common insecure patterns
	summary / actual tools
	information flow
	data flow graph
	control flow versus information flow
	sources and sinks
	challenges for data flow

	taint tracking
	implementations
	taint tracking in perl
	taint tracking asm
	exercise: defeating
	obfuscation to defeat taint-tracking
	taint for finding mobile leaks

	next few topics
	Rust
	aside: why do people like C/C++?
	safety + escape hatch
	general philosophy

	backup slides
	static analysis limits?

