
rust / sandboxing 1

1

last time
static analysis possibilities

very practical analyses: finding common mistake patterns
more ambitious/inaccurate: safety properties like no UAF/out-of-bounds

information flow analysis / static or dynamic
does data move from source to sink
e.g. does private info (keypresses, phone numbers, etc.) leak?
e.g. can attacker control SQL statement, shell command?
e.g. where does malware’s network input end up on filesystem?

toward better programming languages
what about C/C++ makes people use it
idea of escape hatches for limits of safe languages

2

logistics note
FUZZ deadline

quiz

3

simple Rust syntax (1)
fn main() {

println!("Hello, World!\n");
}

4

simple Rust syntax (2)
fn timesTwo(number: i32) -> i32 {

return number * 2;
}

5

simple Rust syntax (3)
struct Student {

name: String,
id: i32,

}

fn get_example_student() -> Student {
return Student {

name: String::from("Example Fakelastname"),
id: 42,

};
}

6

simple Rust syntax (4)
fn factorial(number: i32) -> i32 {

let mut result = 1;
let mut index = 1;
while index <= number {

result *= index;
index = index + 1;

}
return result;

}

“input” is a mutable variable
type automatically inferred as i32 (32-bit int)

7

simple Rust syntax (4)
fn factorial(number: i32) -> i32 {

let mut result = 1;
let mut index = 1;
while index <= number {

result *= index;
index = index + 1;

}
return result;

}

“input” is a mutable variable
type automatically inferred as i32 (32-bit int)

7

Rust references
fn main() {

let mut x: u32 = 42;

{
let y: &mut u32 = &mut x;
*y = 100;

}

let z: &u32 = &x;

println!("x = {}; z = {}", x, x);
}

8

Rust example
use std::io;

fn main() {
println!("Enter a number: ");

let mut input = String::new();
// could have also written:
// let mut input: String = String::new();

io::stdin().read_line(&mut input);

// parse number or fail with an error message
let number: u32 = input.trim().parse()

.expect("That was not a number!");
println!("Twice that number is: {}", number * 2);

}

“input” is a mutable variable
type is automatically inferred as String

pass mutable reference to input

number is an immutable unsigned 32-bit integer

9

Rust example
use std::io;

fn main() {
println!("Enter a number: ");

let mut input = String::new();
// could have also written:
// let mut input: String = String::new();

io::stdin().read_line(&mut input);

// parse number or fail with an error message
let number: u32 = input.trim().parse()

.expect("That was not a number!");
println!("Twice that number is: {}", number * 2);

}

“input” is a mutable variable
type is automatically inferred as String

pass mutable reference to input

number is an immutable unsigned 32-bit integer

9

Rust example
use std::io;

fn main() {
println!("Enter a number: ");

let mut input = String::new();
// could have also written:
// let mut input: String = String::new();

io::stdin().read_line(&mut input);

// parse number or fail with an error message
let number: u32 = input.trim().parse()

.expect("That was not a number!");
println!("Twice that number is: {}", number * 2);

}

“input” is a mutable variable
type is automatically inferred as String

pass mutable reference to input

number is an immutable unsigned 32-bit integer

9

Rust example
use std::io;

fn main() {
println!("Enter a number: ");

let mut input = String::new();
// could have also written:
// let mut input: String = String::new();

io::stdin().read_line(&mut input);

// parse number or fail with an error message
let number: u32 = input.trim().parse()

.expect("That was not a number!");
println!("Twice that number is: {}", number * 2);

}

“input” is a mutable variable
type is automatically inferred as String

pass mutable reference to input

number is an immutable unsigned 32-bit integer

9

rules to stop dangling pointers (1)
objects have an single owner

owner is the only one allowed to modify an object

owner can give away ownership

simplest version: only owner can access object

never have multiple references to object — always move/copy

10

Rust objects and ownership (1)
fn mysum(vector: Vec<u32>) -> u32 {

let mut total: u32 = 0
for value in &vector {

total += value
}
return total

}

fn foo() {
let vector: Vec<u32> = vec![1, 2, 3];
let sum = mysum(vector);
// **moves** vector into mysum()

// philosophy: no implicit expensive copies

println!("Sum is {}", sum);
// ERROR
println!("vector[0] is {}" , vector[0]);

}

Compiling lecture−demo v0.1.0 (file:///home/cr4bd/spring2017/cs4630/...
error[E0382]: use of moved value: vector

−−> src/main.rs:16:34
|

13 | let sum = mysum(vector);
| −−−−−− value moved here

...
16 | println!("vector[0] is {}" , vector[0]);

| ^^^^^^ value used here after move

11

Rust objects and ownership (1)
fn mysum(vector: Vec<u32>) -> u32 {

let mut total: u32 = 0
for value in &vector {

total += value
}
return total

}

fn foo() {
let vector: Vec<u32> = vec![1, 2, 3];
let sum = mysum(vector);
// **moves** vector into mysum()

// philosophy: no implicit expensive copies

println!("Sum is {}", sum);
// ERROR
println!("vector[0] is {}" , vector[0]);

}

Compiling lecture−demo v0.1.0 (file:///home/cr4bd/spring2017/cs4630/...
error[E0382]: use of moved value: vector

−−> src/main.rs:16:34
|

13 | let sum = mysum(vector);
| −−−−−− value moved here

...
16 | println!("vector[0] is {}" , vector[0]);

| ^^^^^^ value used here after move

11

Rust objects and ownership (2)
fn mysum(vector: Vec<u32>) -> u32 {

let mut total: u32 = 0
for value in &vector {

total += value
}
return total

}

fn foo() {
let vector: Vec<u32> = vec![1, 2, 3];
let sum = mysum(vector.clone());
// give away a copy of vector instead

// mysum will dispose, since it owns it

println!("Sum is {}", sum);
println!("vector[0] is {}" , newVector[0]);

}

mysum borrows a copy

12

Rust objects and ownership (2)
fn mysum(vector: Vec<u32>) -> u32 {

let mut total: u32 = 0
for value in &vector {

total += value
}
return total

}

fn foo() {
let vector: Vec<u32> = vec![1, 2, 3];
let sum = mysum(vector.clone());
// give away a copy of vector instead

// mysum will dispose, since it owns it

println!("Sum is {}", sum);
println!("vector[0] is {}" , newVector[0]);

}

mysum borrows a copy

12

moving?
moving a Vec — really copying a pointer to an array and its size

cloning a Vec — making a copy of the array itself, too

Rust defaults to moving non-trivial types

some trivial types (u32, etc.) are copied by default

13

Rust objects and ownership (3)
fn mysum(vector: Vec<u32>) -> (u32, Vec<u32>) {

let mut total: u32 = 0
for value in &vector {

total += value
}
return (total, vector)

}

fn foo() {
let vector: Vec<u32> = vec![1, 2, 3];
let (sum, newVector) = mysum(vector);
// give away vector, get it back

println!("Sum is {}", sum);
println!("vector[0] is {}" , newVector[0]);

}

mysum “borrows” vector, then gives it back
uses pointers

14

Rust objects and ownership (3)
fn mysum(vector: Vec<u32>) -> (u32, Vec<u32>) {

let mut total: u32 = 0
for value in &vector {

total += value
}
return (total, vector)

}

fn foo() {
let vector: Vec<u32> = vec![1, 2, 3];
let (sum, newVector) = mysum(vector);
// give away vector, get it back

println!("Sum is {}", sum);
println!("vector[0] is {}" , newVector[0]);

}

mysum “borrows” vector, then gives it back
uses pointers

14

ownership rules
exactly one owner at a time

giving away ownership means you can’t use object

common idiom — temporarily give away object

either give object new owner or deallocate

15

ownership rules
exactly one owner at a time

giving away ownership means you can’t use object
common idiom — temporarily give away object

either give object new owner or deallocate

15

ownership exercise
If called like p = foo(p), which follow single-owner rule?
// (A)
char *foo(char *p) {

free(p);
return NULL;

}

// (B)
char *foo(char *p) {

p = realloc(p, strlen(p) + 100);
strcat(p, "test");
return p;

}

// (C)
char *global;
char *foo(char *p) {

if (p) free(p);
return global;

}

// (D)
char *foo(char *p) {

p[0] = 'A';
return p;

}

16

rules to stop dangling pointers (2)
objects have an single owner

owner can give away ownership permanently
object is “moved”

owner can let someone borrow object temporarily
must know when object is given back

only modify object when exactly one user
owner or exclusive borrower

17

borrowing
fn mysum(vector: &Vec<u32>) -> u32 {

let mut total: u32 = 0
for value in vector {

total += value
}
return total

}

fn foo() {
let vector: Vec<u32> = vec![1, 2, 3];
let sum = mysum(&vector);
// automates (vector, sum) = mysum(vector) idea

println!("Sum is {}", sum);
println!("vector[0] is {}" , vector[0]);

}

18

dangling pointers?
int *dangling_pointer() {

int array[3] = {1,2,3};
return &array[0]; // not an error

}

fn dangling_pointer() -> &mut i32 {
let array = vec![1,2,3];
return &mut array[0]; // ERROR

}

error[E0106]: missing lifetime specifier
−−> src/main.rs:19:25
|

19 | fn dangling_pointer() −> &mut i32 {
| ^ expected lifetime parameter
|
= help: this function's return type contains a borrowed value,

but there is no value for it to be borrowed from

19

dangling pointers?
int *dangling_pointer() {

int array[3] = {1,2,3};
return &array[0]; // not an error

}

fn dangling_pointer() -> &mut i32 {
let array = vec![1,2,3];
return &mut array[0]; // ERROR

}

error[E0106]: missing lifetime specifier
−−> src/main.rs:19:25
|

19 | fn dangling_pointer() −> &mut i32 {
| ^ expected lifetime parameter
|
= help: this function's return type contains a borrowed value,

but there is no value for it to be borrowed from

19

applying rules (1)
single owner, someone can borrow temporarily

only modify if exactly one user
let mut x = 42; // (1)
let p = &mut x; // (2)
*p = 10; // (3)
println!("{}", x); // (4)

int x = 42; // (1)
int *p = &x; // (2)
*p = 10; // (3)
printf("%d\n", x); // (4)

;

Exercise 1/2/3/4: The owner of x on line 1/2/3/4 is:
A. (original owner) the variable x
B. (borrowed) the pointer/reference p

20

applying rules (2)
single owner, someone can borrow temporarily

only modify if exactly one user
let mut x = 42; // (1)
let p = &mut x; // (2)
*p = 10; // (3)
println!("{}", x); // (4)
*p = 11; // (5)

int x = 42; // (1)
int *p = &x; // (2)
*p = 10; // (3)
printf("%d\n", x); // (4)
*p = 11; // (5)

;

Rust rufuses to compile left-side: x being used while borrowed by p

Which changes would avoid this problem?
A. use *p in the println!
B. make p mutable, reassign p = &mut x after line (4)
C. take a non-mutable reference to x instead of a mutable one

21

why lifetimes? (1)
let x = vec![1, 2, 3, 4];
let mut q = &x[1];
{

let mut r = &x[1];
let y = vec![5, 6, 7, 8];
if random() == 0 {

r = &y[1]; // SHOULD BE FINE
q = &y[1]; // SHOULD BE ERROR

}
println!("{}", *r);

}
println!("{}", *q);
need to prevent q referring to values that live too long

22

why lifetimes? (2)
fn mystery(ptr: &i32, vec: &Vec<i32>) −> &i32 {...}

fn example() {
...
let mut x = vec![1, 2, 3, 4];
let mut q = &x[1];
{

let mut y = vec![5, 6, 7, 8];
q = mystery(q, &y);

}
println!("{}", *q);

}
question: should assignment to be q from mystery be allowed?

23

rules to stop dangling pointers (2)
objects have an single owner

owner can give away ownership permanently
object is “moved”

owner can let someone borrow object temporarily
must know when object is given back

only modify object when exactly one user
owner or exclusive borrower

24

lifetimes
every reference in Rust has a lifetime

intuitively: how long reference is usable

Rust compiler infers and checks lifetimes

25

lifetime rules
object is borrowed for duration of reference lifetime

can’t modify object during lifetime
can’t let object go out of scope during lifetime

lifetime of function args must include whole function call

references returned from function must have lifetimes
based on arguments or static (valid for entire program)

references stored in structs must have lifetime longer than struct

26

lifetime inference
fn get_first(values: &Vec<String>) -> &String {

return &values[0];
}

compiler infers lifetime of return value is same as input

27

lifetime hard cases
// ERROR:
fn get_first_matching(prefix: &str, values: &Vec<String>)

-> &String {
for item in values {

if item.starts_with(prefix) {
return item

}
}
panic!()

}

this is a compile-error, because of the return value

compiler need to be told lifetime of return value

28

lifetime annotations
fn get_first_matching<'a, 'b>(prefix: &'a str, values: &'b Vec<String>)

-> &'b String {
for item in values {

if item.starts_with(prefix) {
return item

}
}
panic!()

}

prefix has lifetime a

values and returned string have lifetime b

29

lifetime annotations
fn get_first_matching<'a, 'b>(prefix: &'a str, values: &'b Vec<String>)

-> &'b String {
for item in values {

if item.starts_with(prefix) {
return item

}
}
panic!()

}

fn get_first(values: &Vec<String>) -> &String {
let prefix: String = compute_prefix();
return get_first_matching(&prefix, values)
// prefix deallocated here

}

30

rules to stop dangling pointers (2)
objects have an single owner

owner can give away ownership permanently
object is “moved”

owner can let someone borrow object temporarily
must know when object is given back

only modify object when exactly one user
owner or exclusive borrower

31

restricting modification
fn modifyVector(vector: &mut Vec<u32>) { ... }
fn foo() {

let vector: Vec<u32> = vec![1, 2, 3];
for value in &vector {

if value == 2 {
modifyVector(&mut vector) // ERROR

}
}

}

trying to give away mutable reference

…while the for loop has a reference

32

what about dynamic allocation?
saw Rust’s Vec class — equivalent to C++ vector/Java ArrayList

idea: Vec wraps a heap allocation of an array

owner of Vec “owns” heap allocation
delete when no owner

also Box class — wraps heap allocation of a single value
basically same as Vec except one element

33

escape hatch
Rust lets you avoid compiler’s mechanisms

implement your own

unsafe keyword

how Vec is implemented

34

deep inside Vec
pub struct Vec<T> {

buf: RawVec<T>, // interface to malloc
len: usize,

}

impl<T> Vec<T> {
...
pub fn truncate(&mut self, len: usize) {

unsafe {
// drop any extra elements
while len < self.len {

// decrement len before the drop_in_place(), so a panic on Drop
// doesn't re-drop the just-failed value.
self.len -= 1;
let len = self.len;
ptr::drop_in_place(self.get_unchecked_mut(len));

}
}

}
...

}

35

Rust escape hatch support
escape hatch: make new reference-like types

Rc: Rc<T> acts like &T

callbacks on ownership ending (normally deallocation)

Rc: deallocating Rc<T> decrements shared count

choice of what happens on move/copy

Rc: transferring Rc makes new copy, increments shared count

36

alternative rule: reference counting
keep track of number of references

delete when count goes to zero
Rust automatically calls destructor — no programmer effort

Rust implement with Rc type (“counted reference”)

37

Ref Counting Example
struct Grade {

score: i32, studentName: String, assignmentName: String,
}
struct Student {

name: String,
grades: Vec<Rc<Grade>>,

}
struct Assignment {

name: String
grades: Vec<Rc<Grade>>

}

fn add_grade(student: &mut Student, assignment: &mut Assignment, score: i32) {
let grade = Rc::new(Grade {

score: i32,
studentName: student.name,
assignmentName: assignment.name,

})
student.grades.push(grade.clone())
assignment.grades.push(grade.clone())

}

38

Rust escape hatch support
escape hatch: make new reference-like types

Rc: Rc<T> acts like &T

callbacks on ownership ending (normally deallocation)

Rc: deallocating Rc<T> decrements shared count

choice of what happens on move/copy

Rc: transferring Rc makes new copy, increments shared count

39

Rc implementationed (annotated) (1)
impl<T: ?Sized> Clone for Rc<T> {

...
fn clone(&self) -> Rc<T> {

self.inc_strong(); // <-- incremenet reference count
Rc { ptr: self.ptr }

}
}

40

Rc implementation (annotated) (2)
unsafe impl<#[may_dangle] T: ?Sized> Drop for Rc<T> {

...
fn drop(&mut self) { // <-- compilers calls on deallocation

unsafe {
let ptr = *self.ptr;

self.dec_strong(); // <-- decrement reference cont
if self.strong() == 0 { // if ref count is 0

// destroy the contained object
ptr::drop_in_place(&mut (*ptr).value);
...

}
}

}
...

}

41

data races
Rusts rules around modification built assuming concurrency

OSes and other “systems programming” applications use multiple
cores/threads

particular problem: value being used from multiple threads at same
time

42

data races from use-after-free
given x: Rc<Foo> variable calling x.clone() on two cores

some variable shared between two cores
reference counting will prevent use-after-free, right?

x.clone on core A x.clone on core B

x.inc_strong():
temp <- self.count

x.inc_strong():
temp <- self.count
self.count <- temp + 1

self.count <- temp + 1
problem: reference count one too low!

43

Rust solution?
one option: require Rc implementation to handle mutiple cores

problem: not zero overhead

Rust solution: different types for multithreaded/multicore code

two “traits” to mark custom types:
Sync: can be used from multiple cores/threads at once
Send: can be moves from one thread to another

two implementations of referenc counting
Rc: not suitable for multicore, not marked Sync/Send
Arc: is suitable for multicore, slower than Rc probably

44

example: concurreny UAF bug
Figure from Bai, Lawall, Chen and Mu
(Usenix ATC’19)
“Effective Static Analysis of Concurrency

Use-After-Free Bugs in Linux drivers”

bug in a wireless networking driver

45

other policies Rust supports
RefCell — borrowing, but check at runtime, not compile-time

detect at runtime if used while already used
internally: destructor call when returned object goes out of scope

Weak — reference-counting, but don’t contribute to count
detect at runtime if used with count = 0

Mutex — with multicore, enforce one user at a time by waiting

…

46

other policies Rust supports
RefCell — borrowing, but check at runtime, not compile-time

detect at runtime if used while already used
internally: destructor call when returned object goes out of scope

Weak — reference-counting, but don’t contribute to count
detect at runtime if used with count = 0

Mutex — with multicore, enforce one user at a time by waiting

…

46

zero-overhead
normal case — lifetimes — have no overhead

compiler proves safety, generates code with no bookkeeping

other policies (e.g. reference counting) do

…but can implement new ones if not good enough

47

other things languages can enforce?
saw: enforcing no use-after-free

lots of coding conventions we might try to enforce:

code’s runtime does not depend on secret data
secret data has different type
variable time operations prohibited with secret data

sensitive data not passed to wrong place
sensitive data has different type
assignment to wrong places is a type error

code has bounded runtime
langauge prohibits not unbounded loops, recursion, etc.

48

some constant time ideas

FaCT, PLDI 2019; CT-Wasm: POPL 2019
49

constant-time programming languages
active research area, no consensus on what works best

common approach: separate type for secret data
compiler or language virtual machine disallows variable-time
operations using secret data
no secret-based array lookup (cache timing varies)

e.g. array[secret_value] → compile error (type mismatch)

no secret-based integer division (usually variable speed instruction)
…

explicit operations for any secret-to-non-secret conversions
50

least privilege
a typical program I run on my desktop is allowed to…

make network connections to anywhere

upload all my files to the Internet

delete all my files

record all my keystrokes

…

but it probably doesn’t need to…

ideally: if typical program was compromised/malicious,
it still wouldn’t be able to do most of these things

51

things applications need?
what things should browser be able to do?

what things should word processor be able to do?

52

things broswers need

save files

have your webmail password

…

53

multi-user OSs
cr4bd@labunix01:~$ cp myprogram.exe /bin/ls
cp: cannot create regular file ‘ / bin/ls’: Permission denied

programs have limited privileges

OS tracks “user” of running every program

result: malware I installed shouldn’t be able to effect other users

idea 1: reuse this support for web browsers
webpage should run as “different user”
malware should only affect web browser?

54

permission enforcement
struct Process {

int user_id;
...

};
int handle_open_system_call(char *filename, ...) {

Process* currentProcess = GetCurrentProcess();
File* file = GetFileByFilename(filename);
if (!file->UserCanAccess(currentProcess->user_id)) {

return ERROR_PERMISSION_DENIED;
}
...

}

55

multi-user OSs
cr4bd@labunix01:~$ cp myprogram.exe /bin/ls
cp: cannot create regular file ‘ / bin/ls’: Permission denied

programs have limited privileges

OS tracks “user” of running every program

result: malware I installed shouldn’t be able to effect other users

idea 1: reuse this support for web browsers
webpage should run as “different user”
malware should only affect web browser?

56

the privilege separation idea
can’t make whole browser run as “different user”

still need to save files, read password, etc.

how about just the parts that are “dangerous”?
part that runs scripts, parses HTML

57

simple privilege separation
simple example: want to show videos

video decoding library is tens of thousands of lines of code
often buggy, includes hard-to-check hand-written assembly

what does video decoding library do?
read video file as input
output images as output

58

simple privilege seperation
setup: create new user

start video decoder as new user

communicate via “pipes”
like terminal to be used by program

59

simple privilege seperation/* dangerous video decoder to isolate */
int main() {

/* switch to right user */
SetUserTo("user-without-privileges"));
while (fread(videoData, sizeof(videoData), 1, stdin) > 0) {

doDangerousVideoDecoding(videoData, imageData);
fwrite(imageData, sizeof(imageData), 1, stdout);

}
}

/* code that uses it */
FILE *fh = RunProgramAndGetFileHandle("./video-decoder");
for (;;) {

fwrite(getNextVideoData(), SIZE, 1, fh);
fread(image, sizeof(image), 1, fh);
displayImage(image);

}

60

issues with privilege separation (1)
“other user” can still do too much

read unprotected files
most of them?

write temporary files?

open network connections

use all your memory

…

61

issues with privilege separation (2)
awkward to do

switching users requires special permissions

seperate user for each video decoder, audio decoder, web page
renderer?

users can debug processes from same user

slowdown — extra copying

62

program to OS interface
primary way application talks to OS: system calls

function calls that request OS do something

typically: how program can interact with rest of system
files
other programs
the network
devices
…

controlling program behavior: control what system calls

63

Linux system call filtering API
privilege seperation support: system call filtering

simple API: seccomp(SECCOMP_SET_MODE_STRICT, 0, 0)

“The only system calls the calling thread is permitted to make are
read, write, _exit, and sigreturn. Other system calls [kill
the program].”

read/write only work on already open files

later: what if we want to be finer-grained?

64

“sandboxing”
result of filtering operations called a “sandbox”

idea: attacker can play in sandbox as much as they want

can’t do anything “harmful”

other possible implementations:
e.g. virtual machine

65

Chrome architecture

66

talking to the sandbox
browser kernel sends commands to sandbox

sandbox sends commands to browser kernel

idea: commands only allow necessary things

67

original Chrome sandbox interface
sandbox to browser “kernel”

show this image on screen
(using shared memory for speed)

make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLscan still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

68

original Chrome sandbox interface
sandbox to browser “kernel”

show this image on screen
(using shared memory for speed)

make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user inputneeds filtering — at least no file: (local file) URLs

can still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

68

original Chrome sandbox interface
sandbox to browser “kernel”

show this image on screen
(using shared memory for speed)

make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLs

can still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

68

original Chrome sandbox interface
sandbox to browser “kernel”

show this image on screen
(using shared memory for speed)

make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLscan still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

68

original Chrome sandbox interface
sandbox to browser “kernel”

show this image on screen
(using shared memory for speed)

make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLscan still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

68

Site Isolation
Chrome since version 67 (desktop)/77 (Mobile) has process per site

site ≈ registered domain name

complicated to implement:
single web page can embed content from multiple sites
web page can call serivces on other websites with “permission” of other
website

69

OpenSSH privilege seperation
OpenSSH uses privilege seperation for its SSH server

what runs on the lab machines when you log into them

separate network processing code from authentication code

seperate process per connection — users don’t share

70

OpenSSH privsep protocol
sandboxed process tells “monitor” to:

perform cryptographic operations
long-term keys never in sandboxed process
commands to ask for cryptographic messages they need

ask to switch to user — if given user password, etc.
monitor process verifies login information

after authentication: new process running as logged-in user
(normally) no issues with special privileges

71

privilege seperation overall
large application changes

OpenSSH: 3k lines of code for communication/etc. added
OpenSSH: 2% of existing code (950 of 44k lines) changed
(but most changes simple)

lots of application knowledge
what is a meaningful separation of ‘privileged’ and ‘unprivileged’?

better application design anyways?

72

application confinement
confining whole browsers was hard

we trust them to do a lot of things — e.g. write arbitrary files

but maybe we can do this for simpler applications?

idea 1: applications send system calls to OS
limit syscalls like we limited browser kernel commands
constructing command language “in reverse”

73

Linux system call filtering: detailed
Linux supports more fine-grained system call filtering

using BPF (Berkeley Packet Filter) programming language
compiled in the kernel to assembly to check system calls

can check system call argument values, but…
problems with pointer arguments
too many system calls

74

Linux system call: open
open("foo.txt", O_RDONLY);

parameters:
system call number: 2 (“open”)
argument 1: 0x7fffe983 (address of string “foo.txt”)
argument 2: 0 (value of “O_RDONLY”)

very problematic to filter using BPF interface

75

filtering system calls?
example: video player VLC playing a local file on my laptop

uses 73 unique kinds of system calls

opens many files that are not the video file
libraries
fonts
configuration files
translations of messages

can I limit the files my video player can read?

how do I come up with a useful filter?

76

Linux namespaces (1)
Linux: alternate sandboxing features

“namespaces” for …

like partial virtual machine / “container”

example: run process in new mount (filesystem) namespace
process has its own, limited view of available files

change to OS:
each process has pointer to its view of available files
some views have less stuff

77

Linux namespaces (2)
user namespace:

can run programs with new view of users:

inside namespace: running as root

outside namespace: root translated to innocent user ID

78

Linux namespaces (3)
user namespace and mount namespace together:

run program in new user + mount (filesystem) namespace

thinks it’s running with full permissions

actually only able to access subset of files

…and only with permissions of limited user

79

Linux namespaces (4)
still need to figure out what files/etc. program needs

“your entire documents directory” probably unsatisfying

OS code that enforces isolation is complicated
much more likely to have bugs/omissions than system call filters
a lot of work to maintain — is it worth it?

80

OS X sandboxing
OS X (tries to) implement system call filtering

main challenge: what about files?
user can open a file anywhere — we expect that to work

OS X solution: OS service displays file-open dialog
OS knows user really choose a file

application can ask to remember file was chosen previously

not chosen/remembered — can’t access
requires changes to how applications open files

81

OS X sandboxing
OS X (tries to) implement system call filtering

main challenge: what about files?
user can open a file anywhere — we expect that to work

OS X solution: OS service displays file-open dialog
OS knows user really choose a file

application can ask to remember file was chosen previously

not chosen/remembered — can’t access
requires changes to how applications open files

81

another sandboxing OS: Qubes
Qubes: heavily sandboxed OS

runs seperate VMs instead of filtering syscalls

UI that clearly shows what VM each window is from

advantage: easier to gaurentee isolation
many, many more bugs in system call filtering than VMs

disadvantage: harder to share between VMs

disadvantage: much more runtime overhead

82

Qubes screenshot

83

	logistics note
	general syntax
	references
	basic example
	in context

	basic ownership
	exercise

	Rust: stopping dangling pointers
	borrowing
	exercise
	lifetimes
	motivation
	lifetime tracking

	one writer

	Rust: escape hatches and supporting dynamic allocation
	escape hatches implementing Vec
	implementing new sharing schemes
	concurrency
	example Linux concurrency UAF

	other Rust smart pointers

	zero-overhead
	aside: other language enforcement?
	example: constant time languages

	principle: least privilege
	what do browsers need?
	OS users
	promise: privilege separation

	privilege separation: video decode
	another user is not enough
	awkwardness of creating a new user

	system calls as OS interface
	simple Linux system call filtering
	definition: sandbox
	Chrome architecture
	Site Isolation

	OpenSSH architecture
	normal application confinement?

	more fine-grained filtering?
	applied to VLC?
	Linux namespaces
	OSX sandboxing
	Qubes

