
1

Changelog
26 April 2021: chroot ls: add first missing chroot command;
consistently use /tmp/example

26 April 2021: mount namespaces API: add mount commands that
would be needed to actually run ls

26 April 2021: Linux namespaces (3): mention that a chroot will
happen in addition to mounting things; be more explicit about how
user namespaces change things, opting out of sudo, effectively

1

last time
Rust options for “smart pointer” types

other language enforcement ideas: e.g. constant-time

what programs are allowed to do vs. what programs need
goal: “least privilege”

privilege separation as application design
examples: Chrome, OpenSSH

mechanism: system call filtering

problem: more precise system call filtering?

2

challenge/final logistics
CHALLENGE assignment plan:

9% of final grade (= approx. 2 homeworks)
7 “make this program output X” problems
solve any 5 for full credit
expect to release no later than 30 April
due 12 May 2021 @ 9pm

FINAL quiz
6% of final grade
focused on material that can’t be covered by CHALLENGE
intending something that won’t take longer than 90 minutes

(it varies how good I am meeting that target)
released 12 May 2021 @ 9pm
due 13 May 2021 @ 9pm
(our official final period: 2-5pm 13 May)

3

challenge assistance policy
Please do not discuss or expect TAs (or me) to answer questions
about what strategy you should apply to particular challenges. You
are responsible for figuring this out yourself.

You may, however, ask TAs or share general information about how
to identify whether an exploit technique is applicable to a particular
program or about how to apply an exploit technique to other
executables.

We will supply reference solutions to homework assignments.

4

Linux system call filtering: detailed
Linux supports more fine-grained system call filtering

using BPF (Berkeley Packet Filter) programming language
compiled in the kernel to assembly to check system calls

can check system call argument values, but…
problems with pointer arguments
too many system calls

5

Linux system call: open
open("foo.txt", O_RDONLY);

parameters:
system call number: 2 (“open”)
argument 1: 0x7fffe983 (address of string “foo.txt”)
argument 2: 0 (value of “O_RDONLY”)

very problematic to filter using BPF interface

can deal with using ‘ptrace’ — Linux debugging interface
BPF can trigger something like a debugger breakpoint
breakpoint wakes up monitor program (attached like debugger)
‘monitor’ program can perform system call on program’s behalf

6

filtering system calls?
example: video player VLC playing a local file on my laptop

uses 73 unique kinds of system calls

opens many files that are not the video file
libraries
fonts
configuration files
translations of messages

can I limit the files my video player can read?

how do I come up with a useful filter?

7

shared services?
often programs do operations by talking to “server” program

example: GUI management on Linux (X11 or Wayland), OS X
(WindowServer)
example: mixing sound from multiple applications
…

whole extra set of calls to sanitize
when to allow “get keyboard input” for GUI
when to allow “get microphone input” for sound manager
making sure one isn’t manipulating wrong program’s windows?

also, server programs might have security problems
common “sandbox escape”

8

exercise: app confinement options
sandboxed applications want to access display server

which option seems best for security/performance?
A. proxy for protocol display server supports natively that filters display
calls
B. custom protocol that sends bitmaps + receives inputs, plus copy of
display server runs with application
C. divide application into UI and non-UI part, sandbox just the non-UI
part
D. have application take over screen when running, give its own display
server

9

SELinux
Security Enhanced Linux
“Mandatory Access Control” system for the Linux

mandatory: can be configured to require enumeration of files programs
can access
(versus normally: specify what files programs can’t access)

not necessairily run in mandatory control mode

programs run in particular “domain”

objects (files, port numbers, other programs, etc.) can be assigned
labels

rules about what labels programs are allowed to access
10

viewing/assigning labels (1)
$ ls -Z /var/log/lastlog
-rw-r--r--. root root system_u:object_r:lastlog_t:s0 /var/log/lastlog
above: default Red Hat Linux/CentOS configuration

system user

object role

lastlog type
$ chcon --type=newtype_t some_file

11

assigning labels (2)
labels via: “file context mapping”
$ semanage fcontext --add --type web_files_t '/var/www/html(/.*)?'
$ restorecon -R -v /var/www/html
pattern matching rules set default labels

restorecon — switch to default labels, applying rules

12

assigning rules
subset of default rules for Apache httpd (webserver):
define(`read_files_pattern',`
allow $1 $2:dir search_dir_perms;
allow $1 $3:file read_file_perms;

')
...
define(`read_lnk_files_pattern',`
allow $1 $2:dir search_dir_perms;
allow $1 $3:lnk_file read_lnk_file_perms;

')
...
allow httpd_t httpd_config_t:dir list_dir_perms;
read_files_pattern(httpd_t, httpd_config_t, httpd_config_t)
read_lnk_files_pattern(httpd_t, httpd_config_t, httpd_config_t)

httpd_t: ‘type’ for webserver process
13

changing what programs can name
seccomp, SELinux: program tries to access X, checks if allowed

alternate idea: changing what Xs program can name

14

Unix filesystems and mounting
my Linux desktop has two disks:

/ — an SSD
/mnt/extradisk — a hard drive

hard drive appears as subdirectory of SSD

subdirectory called a mount point

15

per-process root
on Unix: each process tracks its own root directory (/)

can be changed with chroot() system call
command-line tool to access: chroot

usage: can isolate program from other files on system
example: limit what public file server can access?

16

chroot ls
mkdir /tmp/example
cp /bin/ls /tmp/example/ls
chroot /tmp/example /ls
chroot: failed to run command ‘ / ls’: No such file or directory
cp −r /lib64 /tmp/example/lib64
mkdir −p /tmp/example/lib
cp −r /lib/x86_64−linux−gnu /tmp/example/lib/x86_64−linux−gnu
chroot /tmp/example /ls
/ls: error while loading shared libraries: libpcre2−8.so.0: cannot open shared object file: No such file or directory
cp /usr/lib/x86_64−linux−gnu/libpcre2−8* /tmp/example/lib/x86_64−linux−gnu
chroot /tmp/example /ls /
lib lib64 ls
chroot /tmp/example /ls /..
lib lib64 ls
#

17

chroot escapes
chroot prevents accessing files outside the new /

but root (system adminstrator) user in chroot can access disks, etc.

typical usage: combine chroot with extra user

18

chroot impracticality
some things make chroot impractical in general:

seems like one needs extra copies of most of the system

hard to communicate between separate roots

requires administrator permissions to configure
dangerous to let normal users configure b/c they could confuse priviliged
(set-user-ID) programs like sudo

19

exercise
what scenarios does chroot make most/least sense for?

A. the rendering part of web browser
B. a web server
C. a media player
D. a network time server (for other machines to set their clocks)

20

Linux namespaces (1)
Linux: alternate sandboxing features

“namespaces” for other resources

chroot: each process has own idea of root directory
change to OS: look up root directory in process, not global variable

can apply this to other resources:
what filesystems (disks) are available
what network devices are available
what user identifier numbers are
…

21

Linux namespaces (2)
user namespace:

can run programs with new view of users:

inside namespace: running as root

outside namespace: root translated to innocent user ID

allows running programs that expect different users
…without changes, but without giving special permissions

mechanism: reassign user ID numbers in kernel

22

aside: Linux clone(), unshare() syscalls
Linux clone system call: start new process (or thread)

flags to specify environment of new process

these flags can include “make a new namespace of a type”
int id = clone(start_function, ..., CLONE_NEWUSER | other−flags);

above option: new user namespace for new process

alternative: for changing current process’s namespace:
unshare(CLONE_NEWUSER);

23

user namespaces API
Linux: users identified by numerical user IDs (UIDs)

with user namespaces:

control file /proc/PROCESS-ID/UID_MAP contains lines like:
0 1000 2 — UID 0–1 maps to UID 1000–1001
1000 2000 100 — UID 1000-1100 maps to UID 2000–2100

can write to that file to reconfigure (if enough permissions)

24

Linux namesapces (3)
mount namespaces:

Unix: mounting disk = making the contents of the disk available as
directories+files

different idea of what filesystems are available

can be setup with bind mounts to “real FS”
but otherwise: no access to directories outside mount namespace
normally requires root — but special case with user namespaces

25

mount namespaces API
from command line:

runs shell (/bin/sh) in new mount namesapce
shell1$ unshare −−mount /bin/sh

setup directories in /tmp/workdir and make them aliases of things on normal FS
these aliases will only exist for processes in mount namespace

shell2$ mkdir −p /tmp/workdir/bin
shell2$ mkdir −p /tmp/workdir/lib
shell2$ mkdir −p /tmp/workdir/usr
shell2$ mkdir −p /tmp/workdir/current
shell2$ mount −o bind,ro /bin /tmp/workdir/bin
shell2$ mount −o bind,ro /lib /tmp/workdir/lib
shell2$ mount −o bind,ro /usr /tmp/workdir/usr
shell2$ mount −o bind /home/someuser /tmp/workdir/current

start new shell with the root directory being /tmp/workdir
shell2$ chroot /tmp/workdir /bin/sh
shell3$ cd /
shell3$ /bin/ls
bin current lib usr 26

Linux namespaces (3)
user namespace and mount namespace together:

run program in new user namespace

map regular root (in namespace) to regular user
“opts out” of programs like sudo

move to new mount namespace

setup bind mounts + chroot
special case: allowed because root in user namespce
can’t get “real” root (administrator) privileges ever

run program with subset of available files

27

Linux namespaces (4)
other resources with namespaces

network — common usage: virtual network device for set processes
hostname (“UTS”)
process identifiers
control groups (resource limits for memory, CPU usage, disk I/O, etc.)

28

Linux sandboxing programs, generally
docker, lxc, lxd, containerd

use namespaces to create “container” with own copy of OS libraries,
services
but containers share OS ‘kernel’ and potentially files with host unlike VM
(might also have options to use other ways of getting this functionality
— VM’s, etc.)

bubblewrap, firejail
use Linux namespace tools + “bind mounts” to give programs only
subset of files, etc.
firejail has option of running a “proxy” windowing system server

SELinux’s sandbox
uses Security Enhanced Linux’s mandatory access controls instead of
Linux namespaces
includes option for “proxy” for windoing system server

29

containers
Linux’s seccomp + namespaces + SELinux commonly used to
implement containers

(plus cgroups (control groups) for performance isolation)

usual goal: looks like virtual machine, but much lower overhead

examples: Docker, Kubernetes
(note: these may also support other ways of creating ‘lightweight VMs’)

30

runc bug
2019 bug in Docker, other container implementations
(CVE-2019-5736)

blog post for vulnerability finders:
https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-from-docker-and.html

bug setup:
user starts malicious container X
user tells docker to start a new command in malicious container X
malicious container X hijacks the “new command” starting program
hijacked program used to access stuff outside container

part of problem: Docker and others weren’t using user namespaces
at the time

compatability problems

31

https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-from-docker-and.html

runc bug
2019 bug in Docker, other container implementations
(CVE-2019-5736)

blog post for vulnerability finders:
https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-from-docker-and.html

bug setup:
user starts malicious container X
user tells docker to start a new command in malicious container X
malicious container X hijacks the “new command” starting program
hijacked program used to access stuff outside container

part of problem: Docker and others weren’t using user namespaces
at the time

compatability problems

31

https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-from-docker-and.html

setup: /proc/PID
Linux provides /proc directory to access info about programs

used for implementing process list utils, debugging
needed to make a functional container

subdirectory for each process in current container
process ID PID has /proc/PID subdirectory
/proc/self is alias for current process’s subdirectory

included is /proc/PID/exe file — alias for executable file

32

running a command in existing container
to run command X in existing container:

step 1: switch current process to that container

code in container can access /proc here?

including overwriting /proc/self/exe!
which is a program run as root!

step 2: execute command X

33

running a command in existing container
to run command X in existing container:

step 1: switch current process to that container

code in container can access /proc here?

including overwriting /proc/self/exe!
which is a program run as root!

step 2: execute command X

33

partial fix
can disable access to /proc/PID/exe (and related things)

system call: prctl(PR_SET_DUMPABLE, 0)

but…the run-in-container tool did this for a while

problem: this gets reset on executing a new program

and attacker could make the new program be /proc/PID/exe
one mechanism: symbolic links (file aliases)

but change dynamic linking setup to run attacker code

…which accesses /proc/self/exe

34

partial fix
can disable access to /proc/PID/exe (and related things)

system call: prctl(PR_SET_DUMPABLE, 0)

but…the run-in-container tool did this for a while

problem: this gets reset on executing a new program

and attacker could make the new program be /proc/PID/exe
one mechanism: symbolic links (file aliases)

but change dynamic linking setup to run attacker code

…which accesses /proc/self/exe

34

full fix
make single-use copy of start-in-container tool each time command
run

in-memory file

…so modifying it doesn’t change anything
(but it’s also protected from modification)

other solutions:
make executable non-writable (e.g. SELinux, don’t run container as root)

35

	more fine-grained filtering?
	applied to VLC?
	shared services?
	pro/con shared services
	SELinux
	versus capability-type approach
	chroot
	exercise

	Linux namespaces
	Linux programs that attempt confinement
	containers
	runC bug

