
CS 4630 Midterm 1, Page 1 of 6 Computing ID:

Fill out the bottom of this page with your computing ID.
Write your computing ID at the top of each page in case pages get separated.

X86-64 calling convention reminder:
• first argument: %rdi
• second argument: %rsi
• return value: %rax
• return address: on stack

X86-64 registers reminder:
• %rax (64-bit), %eax (lower 32 bits), %ax (lower 16 bits), %al (lower 8 bits)
• (and similar for %rbx, %rcx, %rdx)
• %rsi (64-bit), %esi (lower 32 bits), %si (lower 16 bits), %sil (lower 8 bits)
• (and similar for %rbp, %rsp, %rdi)
• %r8 (64-bit), %r8d (lower 32 bits), %r8w (lower 16 bits), %r8b (lower 8 bits)
• (and similar for %r9 through %r15)

AT&T syntax reminder:
• 0x1234(%r9,%r10,4) = memory at 0x1234 + %r9 + %r10 × 4
• $0x12345678 = constant
• 0x12345678 = memory at 0x12345678
• source, destination

TPEGS FOOTER HERE

CS 4630 Midterm 1, Page 2 of 6 Computing ID:

1. Consider the following C function:
void foo(char *array) {

char buffer[64]; int i;
for (i = 0; array[i] != '\0'; ++i) {

buffer[i] = array[i] ^ array[i-1];
}
for (i = 0; array[i] != '\0'; ++i) {

array[i] = buffer[i];
}

}

With one compiler and set of optimization flags it compiles to the following assembly
(shown using objdump output from a generated executable):

00000000004004e6 <foo>:
4004e6: 48 83 ec 40 sub $0x40,%rsp
4004ea: 31 c0 xor %eax,%eax
4004ec: 8a 14 07 mov (%rdi,%rax,1),%dl
4004ef: 84 d2 test %dl,%dl
4004f1: 74 0c je 4004ff <foo+0x19>
4004f3: 32 54 07 ff xor -0x1(%rdi,%rax,1),%dl
4004f7: 88 14 04 mov %dl,(%rsp,%rax,1)
4004fa: 48 ff c0 inc %rax
4004fd: eb ed jmp 4004ec <foo+0x6>
4004ff: 31 c0 xor %eax,%eax
400501: 80 3c 07 00 cmpb $0x0,(%rdi,%rax,1)
400505: 74 0b je 400512 <foo+0x2c>
400507: 8a 14 04 mov (%rsp,%rax,1),%dl
40050a: 88 14 07 mov %dl,(%rdi,%rax,1)
40050d: 48 ff c0 inc %rax
400510: eb ef jmp 400501 <foo+0x1b>
400512: 48 83 c4 40 add $0x40,%rsp
400516: c3 retq

(a) What instruction implements the read from array[i−1]?
© mov (%rdi,%rax,1),%dl © xor −0x1(%rdi,%rax,1),%dl
© mov (%rsp,%rax,1),%dl © none of these

(b) In what location is i stored during the first loop?
© %edx/%rdx © %esi/%rdi © %eax/%rax © %esp/%rsp

(c) In what location is array stored during the first loop?
© %rdx © %rdi © %rax © %rcx

(d) In what location is the return address stored during the first loop?
© (%rsp) © %rip © 0x40(%rsp) © 0x48(%rsp) © none of these

(e) In what location is buffer[0] stored during the first loop?
© (%rsp) © %rip © 0x40(%rsp) © 0x48(%rsp) © none of these

(f) The jmp 0x400501 at address 0x400510 is encoded with the one-byte opcode
0xEB followed by the one-byte signed offset 0xEF (two’s complement: −17). What
would be the encoding of that jump if it jumped to address 0x4004FF instead?
© eb ff © eb e1 © eb ed © eb f1 © not possible in two bytes

CS 4630 Midterm 1, Page 3 of 6 Computing ID:

2. For each of the following malware detection techniques that might be used by antivirus
software, identify which of the listed malware countermeasures may be effective against
them. Select all that apply. Grading: 5 points base; -1 for disagreeing answer;
minimum zero
(a) (5 points) Looking for fixed strings that indicate virus code in executable files on

disk.
© metamorphic malware code
© polymorphic malware code
© checking whether loaded machine code has changed in memory
© using cavities instead of appending virus code to a file
© tunneling via examining antivirus library or OS “hooks”
© stealth via hooking OS filesystem functions
© randomly deciding whether or not to run the malware code

(b) (5 points) Looking for fixed strings that indicate virus code in program memory
after an executable has run for some time.

© metamorphic malware code
© polymorphic malware code
© checking whether loaded machine code has changed in memory
© using cavities instead of appending virus code to a file
© tunneling via examining antivirus library or OS “hooks”
© stealth via hooking OS filesystem functions
© randomly deciding whether or not to run the malware code

(c) (5 points) Detecting attempts to modify a “sacrificial goat” executable file. no
deduction for also choosing “randomly deciding…”

© metamorphic malware code
© polymorphic malware code
© checking whether loaded machine code has changed in memory
© using cavities instead of appending virus code to a file
© tunneling via examining antivirus library or OS “hooks”
© stealth via hooking OS filesystem functions
© randomly deciding whether or not to run the malware code

(d) (5 points) Periodically scanning for changes in the contents of a “sacrificial goat”
executable file. no deduction for also choosing “randomly deciding…”

© metamorphic malware code
© polymorphic malware code
© checking whether loaded machine code has changed in memory
© using cavities instead of appending virus code to a file
© tunneling via examining antivirus library or OS “hooks”
© stealth via hooking OS filesystem functions
© randomly deciding whether or not to run the malware code

CS 4630 Midterm 1, Page 4 of 6 Computing ID:

(e) (5 points) Periodically scanning for changes in executable file metadata.
© metamorphic malware code
© polymorphic malware code
© checking whether loaded machine code has changed in memory
© using cavities instead of appending virus code to a file
© tunneling via examining antivirus library or OS “hooks”
© stealth via hooking OS filesystem functions
© randomly deciding whether or not to run the malware code

(f) (5 points) Before any executable is run, checking for the appearance of API function
names (like GetFileAttributesA) in an executable file’s code instead of in it’s
linking information? accepted not selecting stealth (assumption: can’t setup hooks
yet)

© metamorphic malware code
© polymorphic malware code
© checking whether loaded machine code has changed in memory
© using cavities instead of appending virus code to a file
© tunneling via examining antivirus library or OS “hooks”
© stealth via hooking OS filesystem functions
© randomly deciding whether or not to run the malware code

(g) (5 points) Before any executable is run, checking whether its entry-point is in the
last segment of an executable (on systems where this is not typical). accepted not
selecting stealth (assumption: can’t setup hooks yet)

© metamorphic malware code
© polymorphic malware code
© checking whether loaded machine code has changed in memory
© using cavities instead of appending virus code to a file
© tunneling via examining antivirus library or OS “hooks”
© stealth via hooking OS filesystem functions
© randomly deciding whether or not to run the malware code

3. (6 points) Which of the following statements about a program running in a system
virtual machine executing a system call are true? Assume the virtual machine is im-
plemented by privileged operations executed from user mode triggering exceptions (a
“native” or “trap-and-emulate” implementation), not with emulation or binary transla-
tion. Select all that apply.

© Control reaches the host OS or virtual machine monitor before the system call
implementation in the guest OS is run.

© The implementation of the system call in the guest OS is executed in kernel
mode.

© The system call in the program must be replaced by a normal function call.

CS 4630 Midterm 1, Page 5 of 6 Computing ID:

4. (6 points) Which of the following are techniques to detect or break virtual machines like
those that might be used by antivirus software? Select all that apply.

© metamorphic malware code
© using exotic system calls
© checking whether loaded machine code has changed in memory
© timing operations like system calls
© attempting to use a pseudo-random number generator
© checking the names of devices on the system
© using the stack pointer for something other than a stack
© corrupting information in executables that is not used at runtime
© using cavities instead of appending virus code to a file

5. (6 points) Which of the following are techniques to detect or break debuggers? Select
all that apply.

© metamorphic malware code no deduction for selecting (breakpoints in to-be-
decrypted code won’t work)

© using exotic system calls
© checking whether loaded machine code has changed in memory
© timing operations like system calls no deduction for selecting (could detect

single-stepping)
© attempting to use a pseudo-random number generator
© checking the names of devices on the system
© using the stack pointer for something other than a stack
© corrupting information in executables that is not used at runtime
© using cavities instead of appending virus code to a file

6. (10 points) Some malware includes code that transforms machine code programmati-
cally to new machine code. Which of the following are true about such transformations
in metamorphic malware? Select all that apply.

© The transformation code must handle all instructions that exist in the instruc-
tion set architecture for the new machine code to operate properly.

© If the malware changes the lengths of the machine code, then the analysis
(meant transformation) code needs to change relative jumps.

© The transformation code needs to be written without using absolute addresses.
© The transformation code will be run on itself.
© The transformed code will include do-nothing instructions that antivirus soft-

ware can use to detect this technique.

CS 4630 Midterm 1, Page 6 of 6 Computing ID:

7. Consider the following excerpt from running objdump -d on an executable:
0000000000400581 <foo>:

400581: 55 push %rbp
400582: 53 push %rbx
400583: 48 89 f5 mov %rsi,%rbp
400586: 48 89 fb mov %rdi,%rbx
400589: 48 89 fe mov %rdi,%rsi
40058c: 48 81 ec 08 04 00 00 sub $0x408,%rsp
400593: 48 89 e7 mov %rsp,%rdi
400596: e8 95 fe ff ff callq 400430 <strcpy@plt>
40059b: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)
4005a0: 48 89 df mov %rbx,%rdi
4005a3: e8 98 fe ff ff callq 400440 <strlen@plt>
4005a8: 48 8d 3c 04 lea (%rsp,%rax,1),%rdi
4005ac: 48 89 ee mov %rbp,%rsi
4005af: e8 7c fe ff ff callq 400430 <strcpy@plt>
4005b4: 48 89 e7 mov %rsp,%rdi
4005b7: e8 c4 ff ff ff callq 400580 <do_something_with>
4005bc: 48 81 c4 08 04 00 00 add $0x408,%rsp
4005c3: 5b pop %rbx
4005c4: 5d pop %rbp
4005c5: c3 retq
4005c6: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)
4005cd: 00 00 00

Suppose we wanted to insert a jump to some virus code in the middle of this function.
Assume that:

• we can encode the jump using 5 bytes;
• our virus code does not modify any registers;
• besides the virus code and the jump itself, we don’t add any other code to the

program or rely on code not implied by the above disassembly being present
(a) (10 points) Suppose the virus code ends by returning like a normal function.

Where can we insert this jump so it will be reached but will not disrupt the pro-
gram’s behavior? Select all that apply. special case: 8/10 for interpretation
consistent with jump being call

© in place of the subq at 0x40058c
© in place of the call at 0x400596
© in place of the nop at 0x40059b
© in place of the ret at 0x4005c5 virus returns to foo’s caller
© in place of the nop at 0x4005c6

(b) (10 points) Suppose we end the virus code with a jump to a fixed address of our
choice instead of by returning. Where can we insert this jump to the virus code
(correction during exam) so it will be reached but will not disrupt the program’s
behavior?

© in place of the subq at 0x40058c
© in place of the call at 0x400596
© in place of the nop at 0x40059b
© in place of the ret at 0x4005c5
© in place of the nop at 0x4005c6

