
CS 4630 Midterm 2, Page 1 of 6 Computing ID:

Fill out the bottom of this page with your computing ID.
Write your computing ID at the top of each page in case pages get separated.

Linux X86-64 calling convention reminder:
• first argument: %rdi
• second argument: %rsi
• third argument: %rdx
• fourth argument: %rcx
• fifth argument: %r8
• six argument: %r9
• return value: %rax
• return address: on stack
• seventh argument: on stack after return address
• eight argument: on stack after seventh argument

X86-64 registers reminder:
• %rax (64-bit), %eax (lower 32 bits), %ax (lower 16 bits), %al (lower 8 bits)
• (and similar for %rbx, %rcx, %rdx)
• %rsi (64-bit), %esi (lower 32 bits), %si (lower 16 bits), %sil (lower 8 bits)
• (and similar for %rbp, %rsp, %rdi)
• %r8 (64-bit), %r8d (lower 32 bits), %r8w (lower 16 bits), %r8b (lower 8 bits)
• (and similar for %r9 through %r15)

AT&T syntax reminder:
• 0x1234(%r9,%r10,4) = memory at 0x1234 + %r9 + %r10 × 4
• $0x12345678 = constant
• 0x12345678 = memory at 0x12345678
• source, destination

On X86-64, popping from the stack reads the value located at (%rsp), then adds 8 to the stack
pointer.

TPEGS FOOTER HERE

CS 4630 Midterm 2, Page 2 of 6 Computing ID:

1. Consider the following C code:

int process_input(const char *);

int read_input() {
char buffer[50];
int c;
do {

int i = 0;
while ((c = getchar()) != '\n') {

buffer[i] = c;
i += 1;

}
buffer[i] = '\0';

} while (process_input(buffer) == -1);
return process_input(buffer);

}

getchar() is a C standard library function that reads one character (one byte) from
stdin. When assembled, this function has the following stack layout, from highest to
lowest address:

• return address for read_input (8 bytes)
• saved value of %rbp (8 bytes)
• saved value of %rbx (8 bytes)
• unused space (8 bytes)
• buffer (50 bytes)
• unused space (14 bytes)

(a) (3 points) We can perform a stack smashing attack on this function. How many bytes
into the input should we place the address we wish the program to jump to? © 50
© 58 © 64 © 66 © 74 © 88

(b) (6 points) Suppose we determine that the stack pointer is located 0x7000 0100 at
the very beginning of read_input. Suppose we place a 20 byte nop-sled at the
beginning of the input, followed by our injected machine code (‘shellcode’). What
address should we replace the return address with? You may write your answer as an
arithmetic expression(e.g. 0x4000 - 72).

(b)
(c) (3 points) When exploiting this buffer overflow, what bytes can we not have in our

machine code? Select all that apply.
© 0x00 (\0) © 0x0a (\n) © 0x20 (a space character) © 0xFF

(d) (3 points) When exploiting this buffer overflow, what bytes can we not have in our
replacement for the return address? Select all that apply.
© 0x00 (\0) © 0x0a (\n) © 0x20 (space character) © 0xFF

CS 4630 Midterm 2, Page 3 of 6 Computing ID:

2. Consider the following C++ code:

struct Vulnerable {
char description[128];
long defaultValue;
long *data;
int size;

};

void ClearVulnerable(Vulnerable *v) {
for (int i = 0; i < v−>size; ++i) {

v−>data[i] = v−>defaultValue;
}

}

Assume Vulnerable is laid out in memory without any unused space (and with fields
placed in the order declared) and that chars take up one byte, pointers take up 8, and ints
take 4.
Suppose an attacker can overflow the description variable and then cause ClearVulner-
able() to be run.
The attacker wants to use this buffer overflow to overwrite an arbitrary writeable memory
location with a chosen value.
(a) (5 points) How many bytes from the beginning of the description should the at-

tacker put the address to overwrite?
© 128 © 136 © 144 © 148 © none of these

(b) (5 points) How many bytes from the beginning of the description should the at-
tacker put the value to place in the address?
© 128 © 136 © 144 © 148 © none of these

3. (8 points) Suppose an attacker manages to place machine code they want to run in vul-
nerable program’s a global variable at address 0x700000. They discover that the binary
contains the following “stub” for free():

0000000000400400 <free@plt>:
400400: ff 25 12 0c 20 00 jmpq *0x200c12(%rip) # 601018

<_GLOBAL_OFFSET_TABLE_+0x18>
400406: 68 00 00 00 00 pushq $0x0
40040b: e9 e0 ff ff ff jmpq 4003f0 <_init+0x28>

(Recall that objdump outputs addresses in hexadecimal.) Suppose the vulnerable program
allows the attacker to write the address of their injected code, 0x700000, to a memory
location of the attacker’s choice. What memory location should the attacker choose to make
future calls to the free stub free@plt invoke their injected code?

3.

CS 4630 Midterm 2, Page 4 of 6 Computing ID:

4. (25 points) Suppose an application has the following “gadgets” at the indicated memory
addresses:

• at 0x400:
popq %rdi
popq %rbx
ret

• at 0x500:
popq %rax
ret

• at 0x600:
syscall

• at 0x700:
pushq %rax
call *(%rcx)

• at 0x800:
popq %rdx
ret

Suppose an attacker wants to use these gadgets to perform the equivalent of
movq $0x410000, %rdi
movq $0x25, %rax
syscall

using a stack buffer overflow on a system which implements the write XOR execute mitiga-
tion. Assuming the attacker overwrites a vulnerable return address at address 0x80000.
Indicate what the attacker should overwrite the surrounding 8-byte values with to perform
the equivalent of the above assembly using the above gadgets and return- or jump-oriented
programming. You may leave an entry blank or write the word “any” if the value at that
memory location that does not matter. You will not need to use all of the available lines to
answer the question.

address 8-byte value at address

0x80030

0x80028

0x80020

0x80018

0x80010

0x80008

(vulnerable return address) 0x80000

0x7FFF8

CS 4630 Midterm 2, Page 5 of 6 Computing ID:

5. (12 points) Suppose a function calls printf passing a pointer to a buffer containing user
input as the first argument and no other (intentional) arguments. The stack contains the
following when printf is called (from highest to lowest address):

• return address for function that calls printf (8 bytes) at 0x7F00C0
• buffer containing user input/printf argument (128 bytes (16 · 8)) at 0x7F0040
• return address for printf (8 bytes) at 0x7F0038

Recall that %c will print 1 byte and arguments on the stack are always 8 bytes.
What should that input (stored in the stack buffer and passed to printf) be in order for
printf to write the value 16 to memory location 0x601068? Select all that apply.

© %xAAAAAAAA%n\x68\x10\x60\x00\x00\x00\x00\x00
© \x68\x10\x60\x00\x00\x00\x00\x00%c%c%c%c%c%cAA%n (contains six %c)
© AAAAAAAABBBBBBBB\x68\x10\x60\x00\x00\x00\x00\x00%n
© AAAAAAAABBBBBBBB%x%x%x%n\x68\x10\x60\x00\x00\x00\x00\x00
(contains three %x)
© %c%c%c%c%c%c%c%c%c%cAAAAAA%nAAAA\x68\x10\x60\x00\x00\x00\x00\x00
(contains ten %c)
© %c%c%c%c%c%c\x68\x10\x60\x00\x00\x00\x00\x00AA%n (contains six %c)

6. (3 points) If an attacker can overwrite a saved frame pointer, what can they replace it with
to cause the program to execute machine code at address A?

© the address A itself
© the address of a buffer containing the address A

7. (4 points) Suppose an attacker overwrites a linked list node just before the program does
node−>next−>prev = node−>prev;. If they make node−>next contain a pointer to
an array of function pointers, then what can they make node−>prev contain to cause the
program execute machine code at address A?

© the address A itself
© the address A, minus a constant that depends on the layout of list nodes
© the address of a buffer containing the address A

8. For each of the following exploits, identify which, if any, of the following mitigations would
prevent them. Assume that address space layout randomization includes using a position-
independent executable, and that there are no information leaks unless otherwise stated.
(a) (5 points) Using a format string exploit to overwrite a global variable.

© write XOR execute
© address space layout randomization (ASLR) with no information leaks
© ASLR, if the program outputs a stack address
© placing guard pages around all heap allocations
© bounds checking like in “Baggy Bounds Checking”
© stack canaries (AKA stack cookies)

CS 4630 Midterm 2, Page 6 of 6 Computing ID:

(b) (5 points) Using a stack buffer overflow to overwrite a local variable stored immediately
after the buffer.

© write XOR execute
© address space layout randomization (ASLR) with no information leaks
© ASLR, if the program outputs a stack address
© placing guard pages around all heap allocations
© bounds checking like in “Baggy Bounds Checking”
© stack canaries (AKA stack cookies)

(c) (5 points) Replacing the return address with the address of code an attacker placed in
a on-stack buffer, then allowing the program to return to this address.

© write XOR execute
© address space layout randomization (ASLR) with no information leaks
© ASLR, if the program outputs a stack address
© placing guard pages around all heap allocations
© bounds checking like in “Baggy Bounds Checking”
© stack canaries (AKA stack cookies)

(d) (5 points) Overflowing a stack-allocated buffer to overwrite a return address, then
using return-oriented programming

© write XOR execute
© address space layout randomization (ASLR) with no information leaks
© ASLR, if the program outputs a stack address
© placing guard pages around all heap allocations
© bounds checking like in “Baggy Bounds Checking”
© stack canaries (AKA stack cookies)

(e) (5 points) Using a use-after-free vulnerability to replace a VTable pointer to cause the
program to run code in an attacker-controlled stack buffer.

© write XOR execute
© address space layout randomization (ASLR) with no information leaks
© ASLR, if the program outputs a stack address
© placing guard pages around all heap allocations
© bounds checking like in “Baggy Bounds Checking”
© stack canaries (AKA stack cookies)

(f) (5 points) Using a heap buffer overflow to overwrite a pointer used by malloc to point
to a global variable, then allowing the malloc implementation write an attacker-chosen
value to that variable

© write XOR execute
© address space layout randomization (ASLR) with no information leaks
© ASLR, if the program outputs a stack address
© placing guard pages around all heap allocations
© bounds checking like in “Baggy Bounds Checking”
© stack canaries (AKA stack cookies)

