
1

virus: easiest code to find?
what should be easiest/hardest to identify
without many false positives?
A. replaced start location
B. replaced dynamic linker stub
C. replaced dynamic library symbol location
D. replaced function call
E. replaced function return
F. replaced bootloader
G. new automatically started system program

2

virus choices?
why don’t viruses always append/replace?

why don’t viruses always change start location?

why did I bother talking about all these strategies?

head/tail scanning?check for suspicious starting location?

3

more on virus strategies
after we talk about anti-virus strategies some

4

Anti-VirusAnti-VirusAnti-VirusAnti-VirusAnti-VirusAnti-VirusAnti-VirusAnti-VirusAnti-VirusAnti-VirusAnti-VirusAnti-VirusAnti-VirusAnti-VirusAnti-VirusAnti-VirusAnti-Virus andandandandandandandandandandandandandandandandandVirusVirusVirusVirusVirusVirusVirusVirusVirusVirusVirusVirusVirusVirusVirusVirusVirus

anti-malware software goals
prevent malware from running

prevent malware from spreading

undo the effects of malware

key subproblem: detect malware

6

anti-malware software goals
prevent malware from running

prevent malware from spreading

undo the effects of malware

key subproblem: detect malware

6

tripwire
open source tool from c. 2000

also company around that tool, but I don’t know about it

“tool for monitoring and alerting on file & directory changes”

targetted at servers with professional administrators

setup: run tool, it records state of system/etc. files (e.g. hashes)

later: run tool, it tells you if anything changed

7

tripwire as antimalware software?
tripwire idea: detect any changes
notify user (administrator) about them

what is user supposed to do with this info?

what about normal software updates, etc.?
can malware hide in files that are supposed to change?

“data” files with other programs, scripts?
…

what if system compromised before setup?
8

application whitelisting
how about we only let standard applications run, unmodified?

AppStore-based strategy?

not uncommon in corporate environments:

9

case study: Microsoft AppLocker
AppLocker is Windows 7+ feature for limiting what can run

successor(?) feature App Control for Business (Windows 10+)

adminstrator sets rules about…
what publisher is allowed

publisher cryptographically signs applications
allows easy upgrades! (publisher signs new version)
virus-like techniques break signatures

what file hashes are allowed
requires manual update each time software updates

what locations are allowed
presumably for administrator-only directories

10

problems with whitelisting
programs with features/bugs malware could exploit

“AppLocker does not control the behavior of applications after they are
launched. Applications could contain flags passed to functions that
signal AppLocker to circumvent the rules and allow another .exe or .dll
to be loaded.”

users might want to install/develop other software

scripting (Python, server-side JavaScript, …):
“Not all host processes call into AppLocker and, therefore, AppLocker
cannot control every kind of interpreted code”

11

modern bootloaders — secure boot
“Secure Boot” is a common feature of modern bootloaders

idea: UEFI/BIOS code checks bootloader code, fails if not okay
requires user intervention to use not-okay code

12

Secure Boot and keys
Secure Boot relies on cryptographic signatures

idea: accept only “legitimate” bootloaders
legitimate: known authority vouched for them

user control of their own systems?
in theory: can add own keys

what about changing OS instead of bootloader?
bootloader could check cryptographic signature or hash of kernel being
loaded

13

malware “signatures”
typically can’t rely on whitelisting approach

software and related files change legitimately
(note: malware might not be in main executables)

antivirus vendor have signatures for known malware

many options to represent signatures

thought process: signature for Vienna?

goals: compact, fast to check, reliable
14

aside: signature types
one goal: detect malware without it running

examine code+data

our first topic

alternate idea: detect running malware
examine operations performed by software

we’ll revisit later

15

what signature for Vienna?
Suppose we wanted to detect Vienna in execs.

What is best to look for in an exectuable…
in terms of performance? false positives? true positives?

A. machine code found in example infected file at the end of the
executable
B. machine code found in example infected file at the end of the
executable, ignoring parts that change on reinfection
C. portion of virus’s machine code that copies itself to a new file
anywhere in the executable
D. whether another executable file in same directory changes if we run
the executable in a VM
E. for a jump at beginning of the executable to something near the end

16

exercise: signatures for Vienna
jmp 0x0700 /* C */
mov $0x9e4e, %si /* A */
... /* A */
/* more app code */
... /* A */
push %cx
mov $0x8f9, %si /* C */
...
mov $0x0100, %di
mov $3, %cx
rep movsb
...

...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di
mov %cx, (%di)
...
mov $0x288, %cx
mov $0x40 %ah
mov $si, $dx
sub $0x1f9, %dx
int 0x21
...

pop %cx
xor %ax, %ax
xor %bx, %bx
xor %dx, %dx
mov $0x0100, %di
push %di
xor %di, %di
ret
/* virus data */

/* C */ = constant changes when Vienna relocated
/* A */ = application code

17

exercise: signatures for Vienna
jmp 0x0700 /* C */
mov $0x9e4e, %si /* A */
... /* A */
/* more app code */
... /* A */
push %cx
mov $0x8f9, %si /* C */
...
mov $0x0100, %di
mov $3, %cx
rep movsb
...

...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di
mov %cx, (%di)
...
mov $0x288, %cx
mov $0x40 %ah
mov $si, $dx
sub $0x1f9, %dx
int 0x21
...

pop %cx
xor %ax, %ax
xor %bx, %bx
xor %dx, %dx
mov $0x0100, %di
push %di
xor %di, %di
ret
/* virus data */

/* C */ = constant changes when Vienna relocated
/* A */ = application code

17

exercise: signatures for Vienna
jmp 0x0700 /* C */
mov $0x9e4e, %si /* A */
... /* A */
/* more app code */
... /* A */
push %cx
mov $0x8f9, %si /* C */
...
mov $0x0100, %di
mov $3, %cx
rep movsb
...

...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di
mov %cx, (%di)
...
mov $0x288, %cx
mov $0x40 %ah
mov $si, $dx
sub $0x1f9, %dx
int 0x21
...

pop %cx
xor %ax, %ax
xor %bx, %bx
xor %dx, %dx
mov $0x0100, %di
push %di
xor %di, %di
ret
/* virus data */

/* C */ = constant changes when Vienna relocated
/* A */ = application code

17

exercise: signatures for Vienna
jmp 0x0700 /* C */
mov $0x9e4e, %si /* A */
... /* A */
/* more app code */
... /* A */
push %cx
mov $0x8f9, %si /* C */
...
mov $0x0100, %di
mov $3, %cx
rep movsb
...

...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di
mov %cx, (%di)
...
mov $0x288, %cx
mov $0x40 %ah
mov $si, $dx
sub $0x1f9, %dx
int 0x21
...

pop %cx
xor %ax, %ax
xor %bx, %bx
xor %dx, %dx
mov $0x0100, %di
push %di
xor %di, %di
ret
/* virus data */

/* C */ = constant changes when Vienna relocated
/* A */ = application code

17

simple signature (1)
all the code Vienna copies

… except changed mov to %si

virus doesn’t change it to relocate

includes infection code — definitely malicious

18

signature generality
the Vienna virus was copied a bunch of times

small changes, “payloads” added
print messages, do different malicious things, …

this signature will not detect any variants

can we do better?

19

simple signature (2)
Vienna start code

weird jump at beginning??

problem: maybe real applications do this?

problem: easy to move jump

20

simple signature (3)
Vienna infection code

scans directory, finds files

likely to stay the same in variants?

problem: virus writers react to antivirus

21

simple signature (3)
Vienna infection code

scans directory, finds files

likely to stay the same in variants?

problem: virus writers react to antivirus

21

simple signature (4)
Vienna finish code

push + ret

very unusual pattern

probably(?) not in “real” programs

real effort to change to something else?

problem: virus writers react to antivirus

22

simple signature (4)
Vienna finish code

push + ret

very unusual pattern

probably(?) not in “real” programs

real effort to change to something else?

problem: virus writers react to antivirus

22

making things hard for the mouse
don’t want trivial changes to break detection

want to detect strategies
e.g. require changing relocation logic
…not just reordering instructions, adding nops

need to detect signatures in real time
don’t want interrupt user (much)

want to avoid false positive

goals: compact, fast to check, reliable, general?

23

generic pattern example
another possibility: detect writing near 0x100

0x100 was DOS program entry code — no program should do
this(?)

problem: how to represent this?
describe machine code bytes
multiple possibilities

24

regular expressions
one method of representing patterns like this:
regular expressions (regexes)

restricted language allows very fast implementations
especially when there’s a long list of patterns to look for

upcoming homework assignment

25

regular expressions: implementations
multiple implementations of regular expressions

we will target: flex, a parser generator

26

simple patterns
alphanumeric characters match themselves

foo:
matches exactly foo only
does not match Foo
does not match foo␣
does not match foobar

backslash might be needed for others

C\+\+
matches exactly C++ only

27

metachars (1)
special ways to match characters

\n, \t, \x3C, …— work like in C

[b-fi] — b or c or d or e or f or i

[^b-fi] — any character but b or c or …

. — any character except newline

(.|\n) — any character

28

metachars (2)
a* — zero or more as:

(empty string), a, aa, aaa, …

a{3,5} — three to five as:
aaa, aaaa, aaaaa

(abc){3,5} — three to five abcs: (“grouping”)
abcabcabc, abcabcabcabc, abcabcabcabcabc

ab|cd
ab, cd

(ab|cd){2} — two ab-or-cds:
abab, abcd, cdab, cdcd

29

metachars (3)
\xAB — the byte 0xAB

\x00 — the byte 0x00
flex is designed for text, handles binary fine

\n — newline (and other C string escapes)

30

example regular expressions
match words ending with ing:
[a-zA-Z]*ing

match C /* ... */ comments:
/*([^*]|*[^/])**/

31

flex
flex is a regular expression matching tool

intended for writing parsers

generates C code

parser function called yylex

32

flex example
int num_bytes = 0, num_lines = 0;
int num_foos = 0;

%%
foo {

num_bytes += 3;
num_foos += 1;

}
. { num_bytes += 1; }
\n { num_lines += 1; num_bytes += 1; }
%%
int main(void) {

yylex();
printf("%d bytes, %d lines, %d foos\n",

num_bytes, num_lines, num_foos);
}

three sectionsfirst — declarations for later
C code in output file

patterns, code to run on match
as parser: return “token” here

extra code to include

33

flex example
int num_bytes = 0, num_lines = 0;
int num_foos = 0;

%%
foo {

num_bytes += 3;
num_foos += 1;

}
. { num_bytes += 1; }
\n { num_lines += 1; num_bytes += 1; }
%%
int main(void) {

yylex();
printf("%d bytes, %d lines, %d foos\n",

num_bytes, num_lines, num_foos);
}

three sections

first — declarations for later
C code in output file

patterns, code to run on match
as parser: return “token” here

extra code to include

33

flex example
int num_bytes = 0, num_lines = 0;
int num_foos = 0;

%%
foo {

num_bytes += 3;
num_foos += 1;

}
. { num_bytes += 1; }
\n { num_lines += 1; num_bytes += 1; }
%%
int main(void) {

yylex();
printf("%d bytes, %d lines, %d foos\n",

num_bytes, num_lines, num_foos);
}

three sections

first — declarations for later
C code in output file

patterns, code to run on match
as parser: return “token” here

extra code to include

33

flex example
int num_bytes = 0, num_lines = 0;
int num_foos = 0;

%%
foo {

num_bytes += 3;
num_foos += 1;

}
. { num_bytes += 1; }
\n { num_lines += 1; num_bytes += 1; }
%%
int main(void) {

yylex();
printf("%d bytes, %d lines, %d foos\n",

num_bytes, num_lines, num_foos);
}

three sectionsfirst — declarations for later
C code in output file

patterns, code to run on match
as parser: return “token” here

extra code to include

33

flex example
int num_bytes = 0, num_lines = 0;
int num_foos = 0;

%%
foo {

num_bytes += 3;
num_foos += 1;

}
. { num_bytes += 1; }
\n { num_lines += 1; num_bytes += 1; }
%%
int main(void) {

yylex();
printf("%d bytes, %d lines, %d foos\n",

num_bytes, num_lines, num_foos);
}

three sectionsfirst — declarations for later
C code in output file

patterns, code to run on match
as parser: return “token” here

extra code to include

33

flex: matched text
%%
[aA][a−z]* {

printf("found a−word '%s'\n",
yytext);

}
(.|\n) {} /* default rule: would output text */
%%
int main(void) {

yylex();
}

yytext — text of matched thing

34

flex: matched text
%%
[aA][a−z]* {

printf("found a−word '%s'\n",
yytext);

}
(.|\n) {} /* default rule: would output text */
%%
int main(void) {

yylex();
}

yytext — text of matched thing

34

flex: definitions
A [aA]
LOWERS [a−z]
ANY (.|\n)
%%
{A}{LOWERS}* {

printf("found a−word '%s'\n",
yytext);

}
{ANY} {} /* default rule would

output text */
%%
int main(void) {

yylex();
}

definitions of common patterns
included later

35

flex: definitions
A [aA]
LOWERS [a−z]
ANY (.|\n)
%%
{A}{LOWERS}* {

printf("found a−word '%s'\n",
yytext);

}
{ANY} {} /* default rule would

output text */
%%
int main(void) {

yylex();
}

definitions of common patterns
included later

35

flex: state machines
foo {...}
. {...}
\n {...}

start f fo foo

.
\n

f o o

other\n

(back 1)

(ba
ck

2)

36

flex: state machines
foo {...}
. {...}
\n {...}

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
36

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
37

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
37

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
37

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
37

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
37

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
37

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
37

state machine matching
abfoofoabffoo

start f fo foo

.
\n

f o o

other\n (back 1)

(ba
ck

2)
37

why this?
one pass matching (except for some backtracking)

can make state machine bigger to avoid some backtracking

basically speed of file I/O

handles multiple patterns well

flexible for “special cases”

real anti-virus: probably custom pattern “engine”

38

why this?
one pass matching (except for some backtracking)

can make state machine bigger to avoid some backtracking

basically speed of file I/O

handles multiple patterns well

flexible for “special cases”

real anti-virus: probably custom pattern “engine”

38

precomputing backtracking
foo {...}
. {...}
\n {...}

start f fo foo

.
\n

f o o

other\n
other

match . once
for f,
goto start

other

match . twice
for fo,
goto start

39

avoiding backtracking?
fox {...}
foo {...}
off {...}
.|\n {/* do nothing */}

start

f fo

fox

foo

o of offother

f
o o

x

o
f f

o o f

not shown: extra edges to start

40

Vienna patterns (1)
simple Vienna patterns:
/* bytes of fixed part of Vienna sample */
\xFC\x89\xD6\x83\xC6\x81\xc7\x00\x01\x83(etc) {

printf("found Vienna code\n");
}

41

Vienna patterns (2)
simple Vienna patterns:
/* Vienna sample with wildcards for

changing bytes: */
/* push %CX; mov ???, %dx; cld; ... */
\x51\xBA(.|\n)(.|\n)\xFC\x89(etc) {

printf("found Vienna code w/placeholder\n");
}

/* mov $0x100, %di; push %di; xor %di, %di; ret */
\xBF\x00\x01\x57\x31\xFF\xC3 {

printf("found Vienna return code\n");
}

42

Vienna patterns (2)
simple Vienna patterns:
/* Vienna sample with wildcards for

changing bytes: */
/* push %CX; mov ???, %dx; cld; ... */
\x51\xBA(.|\n)(.|\n)\xFC\x89(etc) {

printf("found Vienna code w/placeholder\n");
}

/* mov $0x100, %di; push %di; xor %di, %di; ret */
\xBF\x00\x01\x57\x31\xFF\xC3 {

printf("found Vienna return code\n");
}

42

regular expressions are flexible
for Vienna: lots of flex features we didn’t need

things being repeated variable number of times
one of list of possible characters (bytes)
…

but viruses try to make pattern matching hard

good to think about what we can easily match

43

hard for patterns?
malware makes modificates to evade pattern matching

exercise: suppose we have a pattern for a Vienna-like virus, and a
new version makes the following change. Which of the following is
going to be easiest/hardest to change the pattern for?

A. inserting random number of nops every 8 non-nop instructions of
virus code
B. replacing code at random offset in executable instead of appending
C. registers used for temporaries in virus code chosen at random each
time the virus copies itself
D. instead of appending all the virus code, virus code now split between
cavities with a ”loader” appended (the ”loader” reforms code from the
cavities and jumps to them)

44

making scanners efficient
lots of viruses!

huge number of states, tables
copies of every piece of malware pretty large

reading files is slow!

45

making scanners efficient
lots of viruses!

huge number of states, tables
copies of every piece of malware pretty large

reading files is slow!

46

handling volume
storing signature strings is non-trivial

tens of thousands of states???

observation: fixed strings dominate

47

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

48

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

48

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

48

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

48

scanning for fixed strings
123456789ABCDEF023456789ABCDEF034567…

16-byte “anchor” malware
204D616C6963696F7573205468696E6720 Virus A
34567890ABCDEF023456789ABCDEFG0345 Virus B
6120766972757320737472696E679090F2 Virus C
… …

(full pattern for Virus B)

4-byte hash
FC923131
34598873
994254A3
…

hash function

48

making scanners efficient
lots of viruses!

huge number of states, tables
copies of every piece of malware pretty large

reading files is slow!

49

the I/O problem
scanning still requires reading the whole file

can we do better?

50

selective scanning
check entry point and end only

a lot less I/O, maybe

check known offsets from entry point

heuristic: is entry point close to end of file?

51

real signatures: ClamAV
ClamAV: open source (mostly email) scanning software

signature types:
hash of file
hash of contents of segment of executable

built-in executable, archive file parser
fixed string
basic regular expressions

wildcards, character classes, alternatives
more complete regular expressions

including features that need more than state machines
meta-signatures: match if other signatures match
icon image fuzzy-matching

52

example ClamAV signatures (1)
hashes
4b3858c8b35e964a5eb0e291ff69ced6:78454:Xls.Exploit.Agent-4323916-1:73
7873be8fc5e052caa70fdb8f76205892:293376:Win.Trojan.Sality-93158:73
f358d77926045cba19131717a7b15dec:293376:Win.Trojan.Sality-93159:73
48d4c5294357e664bac1a07fce82ea22:450024:Win.Trojan.Sality-93160:73
e4b8442638b3948ab0291447affa6790:293376:Win.Trojan.Sality-93161:73
df36dc207b689a73ab9cf45a06fb71b0:232448:Win.Trojan.Sality-93162:73
baaeeabc7f4be3199af3d82d10c6b39f:293376:Win.Trojan.Sality-93163:73
...

53

example ClamAV signatures (2)
simple regular expressions (with hex, different syntax than flex)…
Win.Trojan.Vienna-1:0:*:5051e8??00{1-255}5b83eb??fc8d37bf0001b90300f3a48bf3558bec83ec7cb430cd21
Win.Trojan.Vienna-2:0:*:be000356c3*50be????8bd6fcb90500bf0001f3a48bfab430cd21
Win.Trojan.Vienna-3:0:*:50ba????8bf283c60090bf0001b90300fcf3a48bfab430cd213c02
Win.Trojan.Vienna-4:0:*:b440b900048bd681eac102cd21721f3d
Win.Trojan.Vienna-5:0:*:b904048bd681ea130352515350b4
...
Win.Trojan.Vienna-129:0:*:51b89b03cd213d01017503e9????ba6d03fc8bf283c60a90b90300bf0001f3a4

54

example ClamAV signatures (3)
‘logical’ signatures: mutliple regexes together:
Andr.Trojan.Pjapps-58;Engine:51-255,

Container:CL_TYPE_ZIP,Target:0;
(6&0&1&(2|3)&(4|5)); // expected patterns of below
3a39303333; // pattern 0
696d6569; // pattern 1
616e64726f69642e6c6f67; // pattern 2
77696e646f772e6c6f67; // pattern 3
4e6f6b69614e373631302d31; // pattern 4
336c676f6167646d66656a656b67666f733974313563686f6a6d; // pattern 5
0:646578 // pattern 6: "0:" means must be found at beginning of file

55

playing cat
harder to fool ways of detecting malware?

goal: small changes to malware preserve detection

ideal:
detect new malware
detect things malware needs to do accomplish their goals

56

detecting new malware
look for anomalies

patterns of code that real executables “won’t” have

identify bad behavior

57

viruses and executable formats
header: machine type, file type, etc.

program header: “segments” to load
(also, some other information)

segment 1 data
segment 2 data

segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

58

viruses and executable formats
header: machine type, file type, etc.

program header: “segments” to load
(also, some other information)

length edited by virus
segment 1 data
segment 2 data

virus code + new entry point?
segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

58

viruses and executable formats
header: machine type, file type, etc.

program header: “segments” to load
(also, some other information)

length edited by virus
segment 1 data
segment 2 data

virus code + new entry point?
segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

58

viruses and executable formats
header: machine type, file type, etc.

program header: “segments” to load
(also, some other information)
new segment added by virus

segment 1 data
segment 2 data

segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

58

viruses and executable formats
header: machine type, file type, etc.

program header: “segments” to load
(also, some other information)
new segment added by virus

segment 1 data
segment 2 data

segment 3 data — virus segment
heuristic 1: is entry point in last segment?

(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?

58

viruses and executable formats
header: machine type, file type, etc.

program header: “segments” to load
(also, some other information)
new segment added by virus

segment 1 data
segment 2 data

segment 3 data — virus segment

heuristic 1: is entry point in last segment?
(segment usually not code)

heuristic 2: did virus mess up header?
(e.g. do sizes used by linker but not loader disagree)

section names disagree with usage?
58

defeating entry point checking
insert jump in normal code section, set as entry-point

add code to first section instead (perhaps insert new section at
beginning)

“dynamic” heuristic: run code in VM, see if switches sections

59

defeating entry point checking
insert jump in normal code section, set as entry-point

add code to first section instead (perhaps insert new section at
beginning)
“dynamic” heuristic: run code in VM, see if switches sections

59

heuristics: library calls
dynamic linking — functions called by name

how do viruses add to dynamic linking tables?
often don’t! — instead dynamically look-up functions
if do — could mess that up/lots of code

heuristic: look for API function name strings

60

evading library call checking
modify dynamic linking tables

probably tricky to add new entry

reimplement library call manually
Windows system calls not well documented, change

hide names

61

evading library call checking
modify dynamic linking tables

probably tricky to add new entry

reimplement library call manually
Windows system calls not well documented, change

hide names

61

hiding library call names
common approach: store hash of name

runtime: read library, scan list of functions for name

bonus: makes analysis harder

62

behavior-based detection
things malware does that other programs don’t?

modify system files

modifying existing executables

open network connections to lots of random places

…

basic idea: run in virtual machine; and/or monitor all programs

63

behavior-based detection
things malware does that other programs don’t?

modify system files

modifying existing executables

open network connections to lots of random places

…

basic idea: run in virtual machine; and/or monitor all programs

63

hooking
hooking — getting a ‘hook’ to run on (OS) operations

e.g. creating new files
e.g. modifying executable files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system call) handlers
very OS version dependent

less ideal mechanism: debugger support
64

hooking
hooking — getting a ‘hook’ to run on (OS) operations

e.g. creating new files
e.g. modifying executable files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system call) handlers
very OS version dependent

less ideal mechanism: debugger support
65

66

Linux hooking
several possible mechanisms

tracepoints, kprobes
cause hooking functions to run when kernel functions called or return
hooker function can arrange for logging or other action

seccomp BPF
allow hooker to write ‘program’ to examine system calls of selected
processes
can deny/change/log those system calls

67

aside Linux eBPF
eBPF = extended Berkeley Packet Filters

little programming language originally intended for network filtering

68

hooking
hooking — getting a ‘hook’ to run on (OS) operations

e.g. creating new files
e.g. modifying executable files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system call) handlers
very OS version dependent

less ideal mechanism: debugger support
69

changing library loading
e.g. install new library — or edit loader, but …

not everything uses library functions

what if your wrapper doesn’t work exactly the same?

70

hooking
hooking — getting a ‘hook’ to run on (OS) operations

e.g. creating new files
e.g. modifying executable files

ideal mechanism: OS support

less ideal mechanism: change library loading
e.g. replace ‘open’, ‘fopen’, etc. in libraries

less ideal mechanism: replace OS exception (system call) handlers
very OS version dependent

less ideal mechanism: debugger support
71

changing exception call handlers (1)
OS data structure tells hardware where program requests go

simpliest mechanism: edit that data structure
and save a copy of what was there before

point to your code
and call what was there before after behavior check

72

heuristics example: DREBIN paper
from 2014 research paper on Android malware: Arp et al, “DREBIN: Effective and
Explainable Detection of Android Malware in Your Pocket”

primary contribution of paper: big dataset of malware
but tried to detect malware, too…
features from applications (without running):

hardware requirements
requested permissions
whether it runs in background, with pushed notifications, etc.
what API calls it uses
network addresses

detect dynamic code generation explicitly
statistics (i.e. machine learning) to determine score

73

heuristics example: DREBIN paper
advantage: Android uses Dalvik bytecode (Java-like)

high-level “machine code”
much easier/more useful to analyze

accuracy?
tested on 131k apps, 94% of malware, 1% false positives
versus best commercial: 96%, < 0.3% false positives

(probably has explicit patterns for many known malware samples)

…but
statistics: training set needs to be typical of malware
cat-and-mouse: what would attackers do in response?

74

machine learning and adversaries
I don’t like most ML-based approaches to malware detection

problem: most machine learning not designed to deal with
adversaries

attack: find factors used to ID benign programs
do all of them as much as possible
inquiry: what might they be in DREBIN case?

attack: provide many malware samples with benign weird behavior
machine learning uses weird behavior to identify malware
may lower effectiveness on ‘normal’ malware

75

backup slides

76

avoiding backtracking?
fox {...}
foo {...}
off {...}
.|\n {/* do nothing */}

start

f fo

fox

foo

o of offother

f
o o

x

o
f f

o o f

not shown: extra edges to start

77

flex states (1)
%x str
%%
\" { BEGIN(str); }
<str>\" { BEGIN(INITIAL); }
<str>foo { printf("foo in string\n"); }
foo { printf("foo out of string\n"); }
<INITIAL,str>(.|\n) {}
%%
int main(void) {

yylex();
}

declare “state” to track
which state determines what patterns are active

78

flex states (1)
%x str
%%
\" { BEGIN(str); }
<str>\" { BEGIN(INITIAL); }
<str>foo { printf("foo in string\n"); }
foo { printf("foo out of string\n"); }
<INITIAL,str>(.|\n) {}
%%
int main(void) {

yylex();
}

declare “state” to track
which state determines what patterns are active

78

flex states (1)
%x str
%%
\" { BEGIN(str); }
<str>\" { BEGIN(INITIAL); }
<str>foo { printf("foo in string\n"); }
foo { printf("foo out of string\n"); }
<INITIAL,str>(.|\n) {}
%%
int main(void) {

yylex();
}

declare “state” to track
which state determines what patterns are active
“x” — exclusive

78

flex states (2)
%s afterFoo
%%
<afterFoo>foo { printf("later foo\n"); }
foo {

printf("first foo\n");
BEGIN(afterfoo);

}
(.|\n) {}
%%
int main(void) {

yylex();
}

declare non-exclusive state

79

flex states (2)
%s afterFoo
%%
<afterFoo>foo { printf("later foo\n"); }
foo {

printf("first foo\n");
BEGIN(afterfoo);

}
(.|\n) {}
%%
int main(void) {

yylex();
}

declare non-exclusive state

79

handling packers
easiest way to decrypt self-decrypting code — run it!

solution: virtual machine/emulator/debugger in antivirus software

80

handling packers with
debugger/emulator/VM
run program in debugger/emulator/VM for a while

one heuristic: until it jumps to written data

example implementation: unipacker
(https://github.com/unipacker/unipacker)

then dump memory to get decrypted machine code

and/or obtain trace of instructions run

81

unneeded steps
understanding the “encryption” algorithm

more complex encryption algorithm won’t help

extracting the key and encrypted data
making key less obvious won’t help

82

rootkits
rootkit — priviliged malware that hides itself

same ideas as these anti-anti-virus techniques

83

rootkits and whitelisting
talked about application whitelisting

only “known” code authors
only certain list of applications

was problematic when users want to run lots of applications

users less likely to run software that needs access to ‘hook’ OS

84

rootkits and whitelisting
talked about application whitelisting

only “known” code authors
only certain list of applications

was problematic when users want to run lots of applications

users less likely to run software that needs access to ‘hook’ OS

84

Windows driver signing

85

Window driver key stealing

86

aside: driver or not driver?
why does random device driver have permission to do all these
‘hiding’ operations?

(if you’ve taken CSO2) kernel mode → full hardware access

there are OS designs where drivers don’t run with full access
but real performance/complexity costs

87

chkrootkit
chkrootkit — Unix program that looks for rootkit signs

tell-tale strings in system programs
e.g. file, process, network connection listing programs changed

disagreement between process list, other ways of detecting
processes
disagreement between file lists, other ways of counting files
overwritten entries in system login records
known suspicious filenames

hidden exes in temporary, data directories, etc.
88

after scanning — disinfection
antivirus software wants to repair

requires specialized scanning
no room for errors
need to identify all
need to find relocated bits of code

89

	discussion question
	why don't viruses…
	the cat and mouse game
	antimalware goals
	simple detection: tripwire
	application whitelisting: AppLocker
	secure boot
	signature-based detection, generally
	detecting Vienna exercise?
	case study: Vienna
	difficult goals for signatures
	Vienna: general pattern?

	regular expressions
	flex example
	flex state machines
	backtracking problems?
	flex: Vienna example
	why the flexibility?
	exercise: what's easy/hard for patterns

	making scanners more efficient
	fixed strings
	selective scanning

	example: ClamAV
	new malware detection? avoiding evasion?
	heuristics based on executable/library regularity
	behavior based detection
	instrumenting programs

	AI heuristic case study: DREBIN
	machine learning and adversaries

	backup slides
	flex
	flex states
	heuristics to find packers
	rootkits and chkrootkit
	aside: disinfection

