
static analysis

1

fuzzing/symbolic exec imprecision
symbolic execution had some nice properties:

could reliably enumerate possible paths
could figure out inputs
could prove paths are impossible

but had huge practical problems:
not enough time/space to explore all those paths
too complicated to actually solve equations to find inputs

2

complete versus sound
complete (all true positives found)

if way to find problem, analysis finds it

sound (no false positives found)
if analysis finds way problem, it’s a real problem

greybox fuzzing, symbolic exec without approximations: always
sound

because they actually run the program

symbolic execution without approximations: complete if all paths
are solved

but that isn’t practical for a large program
3

other program analysis designs
other design points than symbolic execution:

not tracking all the variable values

alternative: just track properties of interest

compute precisely what paths through code are possible

alternative: track sub/superset of possible paths
superset = find false positives; subset = false negatives

4

model for use-after-free
model for use-after-free, pointer is:

allocated
freed
(other states?)

just track this logical state for each pointer

ignore everything else

assume all if statements/loop conditions can be true or false

5

checking use-after-free (1)
void someFunction(int foo, int bar) {

int *quux = malloc(sizeof(int));
// A
... /* omitted code that doesn't use quux */
free(quux);
// B
... /* omitted code that doesn't use quux */
// C
*quux = bar;
...

}

A: quux: allocated

B: quux: freed

C (from freed): USE-AFTER-FREE

analysis can give warning — almost certainly bad

exercise: how could this be a false positive?

6

checking use-after-free (1)
void someFunction(int foo, int bar) {

int *quux = malloc(sizeof(int));
// A
... /* omitted code that doesn't use quux */
free(quux);
// B
... /* omitted code that doesn't use quux */
// C
*quux = bar;
...

}

A: quux: allocated

B: quux: freed

C (from freed): USE-AFTER-FREE

analysis can give warning — almost certainly bad

exercise: how could this be a false positive?

6

checking use-after-free (1)
void someFunction(int foo, int bar) {

int *quux = malloc(sizeof(int));
// A
... /* omitted code that doesn't use quux */
free(quux);
// B
... /* omitted code that doesn't use quux */
// C
*quux = bar;
...

}

A: quux: allocated

B: quux: freed

C (from freed): USE-AFTER-FREE

analysis can give warning — almost certainly bad

exercise: how could this be a false positive?

6

checking use-after-free (1)
void someFunction(int foo, int bar) {

int *quux = malloc(sizeof(int));
// A
... /* omitted code that doesn't use quux */
free(quux);
// B
... /* omitted code that doesn't use quux */
// C
*quux = bar;
...

}

A: quux: allocated

B: quux: freed

C (from freed): USE-AFTER-FREE

analysis can give warning — almost certainly bad

exercise: how could this be a false positive?

6

result from clang’s scan-build

7

checking use-after-free (2)
int *someFunction(int foo, int bar) {

int *quux = malloc(sizeof(int));
// A
if (Complex(foo)) {

free(quux);
// B

}
... /* omitted code that doesn't use quux */
if (Complex(bar)) {

// C
*quux = bar;

}
... /* omitted code that doesn't use quux */
// D

}

A: quux: allocated

B: quux: freed

C (from quux freed): USE-AFTER-FREE

D (from quux freed)

C (from quux allocated): ok

D (from allocated)

one idea: guess that Complex(foo) can be probably be true

option 1: say “something wrong maybe”?
option 2: try to figure out if Complex(foo) is true?)

8

checking use-after-free (2)
int *someFunction(int foo, int bar) {

int *quux = malloc(sizeof(int));
// A
if (Complex(foo)) {

free(quux);
// B

}
... /* omitted code that doesn't use quux */
if (Complex(bar)) {

// C
*quux = bar;

}
... /* omitted code that doesn't use quux */
// D

}

A: quux: allocated

B: quux: freed

C (from quux freed): USE-AFTER-FREE

D (from quux freed)

C (from quux allocated): ok

D (from allocated)

one idea: guess that Complex(foo) can be probably be true

option 1: say “something wrong maybe”?
option 2: try to figure out if Complex(foo) is true?)

8

checking use-after-free (2)
int *someFunction(int foo, int bar) {

int *quux = malloc(sizeof(int));
// A
if (Complex(foo)) {

free(quux);
// B

}
... /* omitted code that doesn't use quux */
if (Complex(bar)) {

// C
*quux = bar;

}
... /* omitted code that doesn't use quux */
// D

}

A: quux: allocated

B: quux: freed

C (from quux freed): USE-AFTER-FREE

D (from quux freed)

C (from quux allocated): ok

D (from allocated)

one idea: guess that Complex(foo) can be probably be true

option 1: say “something wrong maybe”?
option 2: try to figure out if Complex(foo) is true?)

8

checking use-after-free (2)
int *someFunction(int foo, int bar) {

int *quux = malloc(sizeof(int));
// A
if (Complex(foo)) {

free(quux);
// B

}
... /* omitted code that doesn't use quux */
if (Complex(bar)) {

// C
*quux = bar;

}
... /* omitted code that doesn't use quux */
// D

}

A: quux: allocated

B: quux: freed

C (from quux freed): USE-AFTER-FREE

D (from quux freed)

C (from quux allocated): ok

D (from allocated)

one idea: guess that Complex(foo) can be probably be true

option 1: say “something wrong maybe”?
option 2: try to figure out if Complex(foo) is true?)

8

result from clang’s scan-build

9

exercise: holes in the model?
void example(int a) {

int *p;
int *q;
q = malloc(...);
p = malloc(...);
// (A)
if (a > 0) {

// (A1)
p = q;

}
// (B)
free(p);
// (C)
...

}

exercise: what should state of pointer q be at C?
A. allocated B. freed
C. allocated if+only if reached via path with A1
D. freed if+only if reached via path with A1
E. something else?

10

clang-analyzer output

11

analysis building blocks
needed to track that p and q could point to same thing

common prerequisite for all sorts of program analysis

12

overly simple algorithm for points-to analysis
for each pointer/reference track which objects it can refer to

if multiple paths: take union of all possible

13

simple points-to analysis
void example(int a) {

int *p;
int *q;
q = malloc(...); // ID=1
p = malloc(...); // ID=2
// (A)
if (a > 0) {

p = q;
// (B)

}
// (C)
...

}

A: p (v1): {ID=1}; q (v1): {ID=2}

B: p (v2): {ID=2}; q (v1): {ID=2}

C: p (v3): {ID=1,ID=2}: q (v1): {ID=2}

C via B: p (v2): {ID=2}: q (v1): {ID=2}

C not via B: p (v2): {ID=1}: q (v1): {ID=2}

likely first step: mark different versions of p, q
and track them as separate variables
this way: can avoid storing set of values for q for every block of code
(instead just point to q (v1) set)

alternate idea: avoid path explosion by merging possible setsone idea: keep track of each path separately
(but limit to how much one can do this)

14

simple points-to analysis
void example(int a) {

int *p;
int *q;
q = malloc(...); // ID=1
p = malloc(...); // ID=2
// (A)
if (a > 0) {

p = q;
// (B)

}
// (C)
...

}

A: p (v1): {ID=1}; q (v1): {ID=2}

B: p (v2): {ID=2}; q (v1): {ID=2}

C: p (v3): {ID=1,ID=2}: q (v1): {ID=2}

C via B: p (v2): {ID=2}: q (v1): {ID=2}

C not via B: p (v2): {ID=1}: q (v1): {ID=2}

likely first step: mark different versions of p, q
and track them as separate variables
this way: can avoid storing set of values for q for every block of code
(instead just point to q (v1) set)

alternate idea: avoid path explosion by merging possible setsone idea: keep track of each path separately
(but limit to how much one can do this)

14

simple points-to analysis
void example(int a) {

int *p;
int *q;
q = malloc(...); // ID=1
p = malloc(...); // ID=2
// (A)
if (a > 0) {

p = q;
// (B)

}
// (C)
...

}

A: p (v1): {ID=1}; q (v1): {ID=2}

B: p (v2): {ID=2}; q (v1): {ID=2}

C: p (v3): {ID=1,ID=2}: q (v1): {ID=2}

C via B: p (v2): {ID=2}: q (v1): {ID=2}

C not via B: p (v2): {ID=1}: q (v1): {ID=2}

likely first step: mark different versions of p, q
and track them as separate variables
this way: can avoid storing set of values for q for every block of code
(instead just point to q (v1) set)

alternate idea: avoid path explosion by merging possible sets

one idea: keep track of each path separately
(but limit to how much one can do this)

14

simple points-to analysis
void example(int a) {

int *p;
int *q;
q = malloc(...); // ID=1
p = malloc(...); // ID=2
// (A)
if (a > 0) {

p = q;
// (B)

}
// (C)
...

}

A: p (v1): {ID=1}; q (v1): {ID=2}

B: p (v2): {ID=2}; q (v1): {ID=2}

C: p (v3): {ID=1,ID=2}: q (v1): {ID=2}

C via B: p (v2): {ID=2}: q (v1): {ID=2}

C not via B: p (v2): {ID=1}: q (v1): {ID=2}

likely first step: mark different versions of p, q
and track them as separate variables
this way: can avoid storing set of values for q for every block of code
(instead just point to q (v1) set)

alternate idea: avoid path explosion by merging possible sets

one idea: keep track of each path separately
(but limit to how much one can do this)

14

complicating points-to analysis
would like to analyze program function-at-a-time, but…

functions can change values shared by other functions

what about computed array indices?

what about pointers to pointers?

…

high false-positive solution:
when incomplete info: assume value points to anything of right type

high false-negative solution:
when incomplete info: assume value points to nothing

15

checking use-after-free (3)
void someFunction() {

int *quux = malloc(sizeof(int));
...
// A
do {

// B
...
if (anotherFunction()) {

free(quux);
// C

}
...
// D

} while (complexFunction());
...
// E
*quux++;
...

}

A: allocated

B (from allocated): allocated

C (from allocated): quux: freed

D (from freed): freed

E (from freed): USE-AFTER-FREE

D (from allocated): allocated

E (from allocated): ok

B (from freed): freed

C (from freed): DOUBLE-FREE

16

checking use-after-free (3)
void someFunction() {

int *quux = malloc(sizeof(int));
...
// A
do {

// B
...
if (anotherFunction()) {

free(quux);
// C

}
...
// D

} while (complexFunction());
...
// E
*quux++;
...

}

A: allocated

B (from allocated): allocated

C (from allocated): quux: freed

D (from freed): freed

E (from freed): USE-AFTER-FREE

D (from allocated): allocated

E (from allocated): ok

B (from freed): freed

C (from freed): DOUBLE-FREE

16

checking use-after-free (3)
void someFunction() {

int *quux = malloc(sizeof(int));
...
// A
do {

// B
...
if (anotherFunction()) {

free(quux);
// C

}
...
// D

} while (complexFunction());
...
// E
*quux++;
...

}

A: allocated

B (from allocated): allocated

C (from allocated): quux: freed

D (from freed): freed

E (from freed): USE-AFTER-FREE

D (from allocated): allocated

E (from allocated): ok

B (from freed): freed

C (from freed): DOUBLE-FREE

16

checking use-after-free (3)
void someFunction() {

int *quux = malloc(sizeof(int));
...
// A
do {

// B
...
if (anotherFunction()) {

free(quux);
// C

}
...
// D

} while (complexFunction());
...
// E
*quux++;
...

}

A: allocated

B (from allocated): allocated

C (from allocated): quux: freed

D (from freed): freed

E (from freed): USE-AFTER-FREE

D (from allocated): allocated

E (from allocated): ok

B (from freed): freed

C (from freed): DOUBLE-FREE

16

checking use-after-free (3)
void someFunction() {

int *quux = malloc(sizeof(int));
...
// A
do {

// B
...
if (anotherFunction()) {

free(quux);
// C

}
...
// D

} while (complexFunction());
...
// E
*quux++;
...

}

A: allocated

B (from allocated): allocated

C (from allocated): quux: freed

D (from freed): freed

E (from freed): USE-AFTER-FREE

D (from allocated): allocated

E (from allocated): ok

B (from freed): freed

C (from freed): DOUBLE-FREE

16

checking use-after-free (3)
void someFunction() {

int *quux = malloc(sizeof(int));
...
// A
do {

// B
...
if (anotherFunction()) {

free(quux);
// C

}
...
// D

} while (complexFunction());
...
// E
*quux++;
...

}

A: allocated

B (from allocated): allocated

C (from allocated): quux: freed

D (from freed): freed

E (from freed): USE-AFTER-FREE

D (from allocated): allocated

E (from allocated): ok

B (from freed): freed

C (from freed): DOUBLE-FREE

16

result from clang’s scan-build

17

static analysis
need to avoid exploring way too many paths

clang-analyzer: only a procedure at a time
other analyzers: some way of pruning paths

need to avoid false positives
probably can’t always assume every if can be true/false
one idea: apply symbolic-execution like techniques to prune
clang-analyzer: limited by being procedure-at-a-time

18

common bug patterns
effectively detecting things like “arrays are in bounds”
or “values aren’t used after being freed”
is not very reliable for large programs

(but analysis tools are getting better)

but static analysis tools shine for common bug patterns

19

patterns clang’s analyzer knows
struct foo *p = malloc(sizeof(struct foo*)); // meant struct foo?
long *p = malloc(16 * sizeof(int)); // meant sizeof(long)?

strncat(foo, bar, sizeof(foo));

int *global;
int *foo() {

int x;
int *p = &x;
...
global = p; // putting pointer to stack in global
return p; // returning pointer to stack

}

20

more suspect patterns
SpotBugs: Java static analysis tool
// pattern: connecting to database with empty password:
connection = DriverManager.getConnection(

"jdbc:hsqldb:hsql://db.example.com/xdb" /* database ID */,
"sa" /* username */, "" /* password */);

// pattern: Sql.hasResult()'s second argument isn't a constant
Sql.hasResult(c, "SELECT 1 FROM myTable WHERE code='"+code+"'");

// pattern: new FileReader's argument comes from request
HttpRequest request = ...;
String path = request.getParameter("path");
BufferedReader r = new BufferedReader(

new FileReader("data/" + path));

21

backup slides

22

static analysis practicality
good at finding some kinds of bugs

array out-of-bounds probably not one — complicated tracking needed

excellent for “bug patterns” like:
struct Foo* foo;
...
foo = malloc(sizeof(struct Bar));

false positive rates are often 20+% or more

some tools assume lots of annotations

not limited to C-like languages
23

static analysis tools
Coverity, Fortify — commerical static analysis tools

Splint — unmaintained?
written by David Evans and his research group in the late 90s/early 00s

FindBugs (Java)

clang-analyzer — part of Clang compiler

Microsoft’s Static Driver Verifier — required for Windows drivers:
mostly checks correct usage of Windows APIs

24

checking for array bounds
can try to apply same technique to array bounds

but much more complicated/more likely to have false
positives/negatives

for each array or pointer track:
minimum number of elements before/after what it points to

for each integer track:
minimum bound
maximum bound

similar analysis looking at paths?
25

checking array bounds (1)
int array[100];
void someFunction(int foo) {

// A
if (foo > 100) {

return;
}
// B
array[foo] += 1;

}

A: foo: [− inf, + inf]; array: indices [0, 99]

B: foo: [− inf, +100]; array: indices [0, 99]

give warning about foo == 100? probably bug!
give warning about foo < 0? maybe??

26

checking array bounds (1)
int array[100];
void someFunction(int foo) {

// A
if (foo > 100) {

return;
}
// B
array[foo] += 1;

}

A: foo: [− inf, + inf]; array: indices [0, 99]

B: foo: [− inf, +100]; array: indices [0, 99]

give warning about foo == 100? probably bug!
give warning about foo < 0? maybe??

26

checking array bounds (2)
int array[100];
void someFunction(int foo, bool bar) {

int *p = array;
// A
p += 50;
// B
if (foo >= 50 || foo < 0) abort();
// C
if (bar) {

foo = −foo;
}
// D
p[foo] = 1;

}

A: p: indices [0, 99]; foo: [− inf, + inf]

B: p: indices [-50, 49]; foo: [− inf, + inf]

C: p: indices [-50, 49]; foo: [0, 50]

D (bar true): p: indices: [-50, 49]; foo: [-50, 0]

D (bar false): p: indices: [-50, 49]; foo: [0, 50]

warn about possible out-of-bounds?

27

checking array bounds (2)
int array[100];
void someFunction(int foo, bool bar) {

int *p = array;
// A
p += 50;
// B
if (foo >= 50 || foo < 0) abort();
// C
if (bar) {

foo = −foo;
}
// D
p[foo] = 1;

}

A: p: indices [0, 99]; foo: [− inf, + inf]

B: p: indices [-50, 49]; foo: [− inf, + inf]

C: p: indices [-50, 49]; foo: [0, 50]

D (bar true): p: indices: [-50, 49]; foo: [-50, 0]

D (bar false): p: indices: [-50, 49]; foo: [0, 50]

warn about possible out-of-bounds?
27

preview: information flow
really common pattern we want to find:
data from somewhere gets to dangerous place

pointer to stack escapes function
input makes it to SQL query, file name

we’ll talk about it specially next

28

information flow
so far: static analysis concerned with control flow
often, we’re really worried about how data moves

many applications:
does an array index depend on user input?
does an SQL query depend on user input?
does data sent over network depend on phone number?

…

can do this statically (potential dependencies)
or dynamically (actual dependencies as program runs)

29

information flow graph (1a)
def f(a, b, c):

desc = 'a={},b={}'.format(a, b)
if b > 10:

y = a
else:

y = c
w = y + a
pair = (w, c)
desc = desc + \

',pair={}'.format(pair)
print(desc)
return y

a

'a={},b={}'.format(a,b) y

y+a

desc (v1)

b

desc + ...

returned

c

pair

w

',pair={}'.format(pair)

desc (v2)

printed 30

information flow graph (1b)

ex: does returned value depend on a, b, c?

ex: does value of pair depend on a, b, c?

ex: does printed value depend on a, b, c?

a

'a={},b={}'.format(a,b) y

y+a

desc (v1)

b

desc + ...

returned

c

pair

w

',pair={}'.format(pair)

desc (v2)

printed 31

information flow graph (1b)
ex: does returned value depend on a, b, c?

ex: does value of pair depend on a, b, c?

ex: does printed value depend on a, b, c?

a

'a={},b={}'.format(a,b) y

y+a

desc (v1)

b

desc + ...

returned

c

pair

w

',pair={}'.format(pair)

desc (v2)

printed 31

information flow and control flow
def f(a, b, c):

if b > 10:
y = a

else:
y = c

return y

Q: which is better …
if we’re trying to see if user input makes it to SQL query?
if we’re trying to determine if private info goes out over network?

a

y

return

c ba

y

return

b c

32

static info flow challenges (1)
Python example
def stash(a):

global y
y = a

x = [0,1,2,3]
stash(x)
x[2] = input()
print(y[2])

// C example
int *y;
void stash(int *a) {

y = a;
}
int main() {

int x[3];
stash(x);
y[2] = GetInput();
printf("%d\n",x[2]);

}

same points-to problem with static analysis
need to realize that x[2] and y[2] are the same!

even if assignment to/usage of y is more cleverly hidden

can fix this with dynamic approach: monitor running program 33

static info flow challenges (2)
def retrieve(flag):

global the_default
if flag:

value = input()
else:

value = the_default
value = process(value)
if not flag:

print("base on default: ",value)
return value

retrieve(True)
retrieve(False)

input can’t make it to print here
…but need path-sensitive analysis to tell
can fix this we dynamic approach: monitor running program 34

static info flow challenges (3)
x = int(input())
if x == 0:

print(0)
elif x == 1:

print(1)
elif ...

does input make it to output?

should we try to detect this?
probably depends on intended use of analysis

harder to fix this issue

35

sources and sinks
needed choose sources (so far: function arguments)
and sinks (so far: print, return)

choice depends on application

SQL injection:
sources: input from network
sinks: SQL query functions

private info leak:
sources: private data: phone number, message history, email, …
sinks: network output

36

	Static Analysis, briefly
	fuzzing as symbolic execution compromise
	example: model for use-after-free
	exercise: aliasing and model
	points-to analysis
	complicating points-to analysis
	example: model for use-after-free, with loop
	static analysis limits?
	analysis for common insecure patterns
	summary / actual tools
	example: model for array bounds

	information flow
	data flow graph
	control flow versus information flow
	challenges for data flow
	sources and sinks

