
1



use-after-free

2



vulnerable code
class Foo {

...
};
Foo *the_foo;
the_foo = new Foo;
...
delete the_foo;
...
something_else = new Bar(...);
the_foo−>something();

something_else likely where the_foo was

vtable ptr (Foo)

data for Foo

vtable ptr (Bar)?
other data?

data for Bar

3



vulnerable code
class Foo {

...
};
Foo *the_foo;
the_foo = new Foo;
...
delete the_foo;
...
something_else = new Bar(...);
the_foo−>something();

something_else likely where the_foo was

vtable ptr (Foo)

data for Foo

vtable ptr (Bar)?
other data?

data for Bar

3



realistic use-after-free
code shown above seems very contrived

though bugs that are this simple do happen
usually immediate reuse does not cause problems

one likely case: two pointers to value
example: object referenced from webpage + local variables in javascript
example: object freed from one thread while another uses it
example: “reference count” bookkeeping error

neglecting to handle case

4



Chen, Liu, Xiao, and Wang, “All Use-After-Free Vulnerabilities are not Created Equal: An Empirical Study on Their Characteristics and Detectability” (2023) 5



(LOFTLOD = line of free to line of dereference; BB = basic block)

Chen, Liu, Xiao, and Wang, “All Use-After-Free Vulnerabilities are not Created Equal: An Empirical Study on Their Characteristics and Detectability” (2023) 6



easy heap reuse
strategy of keeping linked list of free items?

simplest way to write code:
free() = add to head of list
malloc() = scan from head of list

if done, makes it easy to predict what will reuse allocation

7



complicating easy reuse
usually can’t precisely control what is allocated/free’d

some allocators mostly use different ordering than last in, first-out
example: lowest to highest address

often different lists for different size ranges/threads

freeing big object may make space for multiple future allocations

8



aside: heap feng shui/grooming
http://www.phreedom.org/research/
heap-feng-shui/heap-feng-shui.html

one idea:

allocate lots of objects to fill up likely holes
choose sizes/etc. based on allocator
allocators usually have separate ‘regions’ for different sizes

allocate three objects of appropriate size
probably three consecutive allocations

free ‘middle’ object + expect it to be reused
9

http://www.phreedom.org/research/heap-feng-shui/heap-feng-shui.html
http://www.phreedom.org/research/heap-feng-shui/heap-feng-shui.html


exploiting use after-free
trigger many “bogus” frees; then

allocate many things of same size with “right” pattern
pointers to shellcode?
pointers to pointers to system()?
objects with something useful in VTable entry?

trigger use-after-free thing

10



use-after-free type confusion
pointer to struct A used as struct B
some applications:
information leak

pointer in A overlaps with integer/string/etc. in B
make program set pointer in A, then print value from B

arbitrary read/write
pointer in A overlaps with integer/string/etc. in B
modify value in B
trigger program to read/write in A

code execution
VTable pointer in A overlaps integer/sting/etc. in B
modify value in B
trigger program to use VTable to call method in A

11



use-after-free type confusion
pointer to struct A used as struct B
some applications:
information leak

pointer in A overlaps with integer/string/etc. in B
make program set pointer in A, then print value from B

arbitrary read/write
pointer in A overlaps with integer/string/etc. in B
modify value in B
trigger program to read/write in A

code execution
VTable pointer in A overlaps integer/sting/etc. in B
modify value in B
trigger program to use VTable to call method in A

11



information leak?
struct Cart { struct String {
int date; char *buffer;
int num_items;

size_t size;
… …
};

allocate Cart + trigger use-after-Free

allocate String

read values from use-after-free’d Cart

12



arbitrary write
struct Cart { struct String {
int date; char *buffer;
int num_items;
… size_t size;
… …
};

allocate Cart + trigger use-after-free

allocate String

set date + item count to match pointer value
only date if modifying lower bits of pointer value

modify value in String

13



example: concurreny UAF bug
Figure from Bai, Lawall, Chen and Mu
(Usenix ATC’19)
“Effective Static Analysis of Concurrency

Use-After-Free Bugs in Linux drivers”

bug in a wireless networking driver

14



consistency?
how to predict what gets reused?

use debugger + print out all the addreses
look for duplicates
probably fixed number of allocations before duplicate

allocators like reusing ‘perfectly size’ space
free something + immediately allocate same size

trigger use-after-free bug lots of times
one of them will match up by accident

15



exercise
struct Codec {

const char *name; void (*DecodeFrame)(...); void (*Seek)(...); ...
};
struct Codec H264 = { "H264", ... }, H265 = { "H265", ...}, MJPEG = { ... };
struct Video {

struct Codec *codec; /* one of H264, ... */
const char *filename;
int framerate, width, height, frames; FILE *fh;
...

};
struct BrowserWindow {

int num_tabs; int active_tab_index; struct BrowserTab *all_tabs;
...

};
struct BrowserTab {

struct BrowserWindow *window;
char current_url[1024];
...

};

Suppose UAF of BrowserTab being overwritten by new Video object…

To break ASLR, what methods to get data from BrowserTab would be useful?
16



exercise
struct String {

size_t alloc_size;
size_t used_size;
char *data;
bool is_utf8;

};
struct FileInfo {

const char *name;
time_t creation_time;
time_t modification_time;
FILE *file_data;

}

If we have a String + FileInfo in same place from use-after-free
What sequence of String/FileInfo operations to modify memory at
0x12345678?

17



exercise

std::istream *in =
new std::ifstream("in.txt");

...
delete in;
...
char *other_buffer =

new char[strlen(INPUT) + 1];
strcpy(other_buffer, INPUT);
...
char c = in−>get();

vuln. code
class istream {

...
int get() { ... buf−>uflow(); ... }
streambuf *buf;
~istream() { delete buf; }

};
class streambuf {

...
protected:

virtual type_for_char uflow() = 0;
/* called to get next char*/

};
class _File_streambuf : public streambuf { ... }

ifstream internals

attacker goal: change what uflow() call does
Q1: assuming same size → likely to get same address, what size for attacker
to choose for INPUT?
Q2: where in INPUT to place pointer to code to run?

18



real UAF exploitable bug
2012 bug in Google Chrome

exploitable via JavaScript

discovered/proof of concept by PinkiePie

allowed arbitrary code execution via VTable manipulation

19



UAF triggering code
// in HTML near this JavaScript:
// <video id="vid"> (video player element)
function source_opened() {
buffer = ms.addSourceBuffer('video/webm; codecs="vorbis,vp8"');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;

}
ms = new WebKitMediaSource();
ms.addEventListener('webkitsourceopen', source_opened);
vid.src = window.URL.createObjectURL(ms);

// implements JavaScript buffer.timestampOffset = 42
void SourceBuffer::setTimestampOffset(...) {

if (m_source−>setTimestampOffset(...))
...

}
bool MediaSource::setTimestampOffset(...) {

// m_player was deleted when video player element deleted
// but this call does *not* use a VTable
if (!m_player−>sourceSetTimestampOffset(id, offset))

...
}
bool MediaPlayer::sourceSetTimestampOffset(...) {

// m_private deleted when MediaPlayer deleted
// this *is* a VTable-based call
return m_private−>sourceSetTimestampOffset(id, offset);

}

via https://bugs.chromium.org/p/chromium/issues/detail?id=162835 20

https://bugs.chromium.org/p/chromium/issues/detail?id=162835


UAF triggering code
// in HTML near this JavaScript:
// <video id="vid"> (video player element)
function source_opened() {
buffer = ms.addSourceBuffer('video/webm; codecs="vorbis,vp8"');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;

}
ms = new WebKitMediaSource();
ms.addEventListener('webkitsourceopen', source_opened);
vid.src = window.URL.createObjectURL(ms);

// implements JavaScript buffer.timestampOffset = 42
void SourceBuffer::setTimestampOffset(...) {

if (m_source−>setTimestampOffset(...))
...

}
bool MediaSource::setTimestampOffset(...) {

// m_player was deleted when video player element deleted
// but this call does *not* use a VTable
if (!m_player−>sourceSetTimestampOffset(id, offset))

...
}
bool MediaPlayer::sourceSetTimestampOffset(...) {

// m_private deleted when MediaPlayer deleted
// this *is* a VTable-based call
return m_private−>sourceSetTimestampOffset(id, offset);

}

via https://bugs.chromium.org/p/chromium/issues/detail?id=162835 20

https://bugs.chromium.org/p/chromium/issues/detail?id=162835


UAF triggering code
// in HTML near this JavaScript:
// <video id="vid"> (video player element)
function source_opened() {
buffer = ms.addSourceBuffer('video/webm; codecs="vorbis,vp8"');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;

}
ms = new WebKitMediaSource();
ms.addEventListener('webkitsourceopen', source_opened);
vid.src = window.URL.createObjectURL(ms);

// implements JavaScript buffer.timestampOffset = 42
void SourceBuffer::setTimestampOffset(...) {

if (m_source−>setTimestampOffset(...))
...

}
bool MediaSource::setTimestampOffset(...) {

// m_player was deleted when video player element deleted
// but this call does *not* use a VTable
if (!m_player−>sourceSetTimestampOffset(id, offset))

...
}
bool MediaPlayer::sourceSetTimestampOffset(...) {

// m_private deleted when MediaPlayer deleted
// this *is* a VTable-based call
return m_private−>sourceSetTimestampOffset(id, offset);

}

via https://bugs.chromium.org/p/chromium/issues/detail?id=162835 20

https://bugs.chromium.org/p/chromium/issues/detail?id=162835


UAF triggering code
// in HTML near this JavaScript:
// <video id="vid"> (video player element)
function source_opened() {
buffer = ms.addSourceBuffer('video/webm; codecs="vorbis,vp8"');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;

}
ms = new WebKitMediaSource();
ms.addEventListener('webkitsourceopen', source_opened);
vid.src = window.URL.createObjectURL(ms);

// implements JavaScript buffer.timestampOffset = 42
void SourceBuffer::setTimestampOffset(...) {

if (m_source−>setTimestampOffset(...))
...

}
bool MediaSource::setTimestampOffset(...) {

// m_player was deleted when video player element deleted
// but this call does *not* use a VTable
if (!m_player−>sourceSetTimestampOffset(id, offset))

...
}
bool MediaPlayer::sourceSetTimestampOffset(...) {

// m_private deleted when MediaPlayer deleted
// this *is* a VTable-based call
return m_private−>sourceSetTimestampOffset(id, offset);

}
via https://bugs.chromium.org/p/chromium/issues/detail?id=162835 20

https://bugs.chromium.org/p/chromium/issues/detail?id=162835


UAF triggering code
// in HTML near this JavaScript:
// <video id="vid"> (video player element)
function source_opened() {
buffer = ms.addSourceBuffer('video/webm; codecs="vorbis,vp8"');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;

}
ms = new WebKitMediaSource();
ms.addEventListener('webkitsourceopen', source_opened);
vid.src = window.URL.createObjectURL(ms);

// implements JavaScript buffer.timestampOffset = 42
void SourceBuffer::setTimestampOffset(...) {

if (m_source−>setTimestampOffset(...))
...

}
bool MediaSource::setTimestampOffset(...) {

// m_player was deleted when video player element deleted
// but this call does *not* use a VTable
if (!m_player−>sourceSetTimestampOffset(id, offset))

...
}
bool MediaPlayer::sourceSetTimestampOffset(...) {

// m_private deleted when MediaPlayer deleted
// this *is* a VTable-based call
return m_private−>sourceSetTimestampOffset(id, offset);

}
via https://bugs.chromium.org/p/chromium/issues/detail?id=162835 20

https://bugs.chromium.org/p/chromium/issues/detail?id=162835


UAF exploit (approx. pseudocode)
... /* use information leaks to find relevant addresses */
buffer = ms.addSourceBuffer('video/webm; codecs="vorbis,vp8"');
vid.parentNode.removeChild(vid);
vid = null;
gc();
// allocate object to replace m_private
var array = new Uint32Array(168/4);
// allocate object to replace m_player
// type chosen to keep m_private pointer unchanged
rtc = new webkitRTCPeerConnection({'iceServers': []});
array[0] = ... /* fill in array with chosen values */
// trigger VTable Call that uses chosen address
buffer.timestampOffset = 42;

21



type confusion

m_private (pointer to PlayerImpl)
m_timestampOffset (double)

MediaPlayer (deleted but used)
(something not changed)
m_??? (pointer)…

webkitRTC… (replacement)

VTable pointer
…

PlayerImpl (deleted but used)
array[0], array[1]
array[2], array[3]
…

array of 32-bit ints (replacement)

22



missing pieces: information disclosure
need to learn address to set VTable pointer to

(and other addresses to use)

allocate types other than Uint32Array

rely on confusing between different types, e.g.

m_private (pointer to PlayerImpl)
m_timestampOffset (double)

MediaPlayer (deleted but used)
…
m_buffer (pointer)

Something (replacement)

allows reading timestamp value to get a pointer’s address

23



use-after-free easy cases
common problem for JavaScript implementations

use-after-free’d object often some complex C++ object
example: representation of video stream

exploits can choose type of object that replaces
allocate that kind of object in JS

can often arrange to read/write vtable pointer
depends on layout of thing created
easy examples: string, array of floating point numbers

24



backup slides

25


	use-after-free
	reuse observation
	pattern
	concurrency and UAF
	consistency?
	exercise: info leak
	exercise: subterfuge
	exercise: vtable
	example
	JS and similar interfaces v use-after-free

	backup slides

