
1

self-replicating malware
attacker’s problem:
getting malware to run where they want

some options:

connect to machine and install it there

send to someone

convince someone else to send it to someone

all automatable!

2

self-replicating malware
attacker’s problem:
getting malware to run where they want

some options:

connect to machine and install it there

send to someone

convince someone else to send it to someone

all automatable!
2

recall: kinds of malware
viruses — infects other programs

worms — own malicious programs

trojans — useful (looking) program that also is malicious

rootkit — silent control of system

only useful after compromisingneeds to way to be run in the first placetargeted “social engineering”

3

viruses: hiding in files
get someone run your malware?

program they already want to run

to spread your malware?

program they already want to copy

trojan approach: create/modify new program

simpler: modify already used/shared program

4

viruses: hiding in files
get someone run your malware?

program they already want to run

to spread your malware?

program they already want to copy

trojan approach: create/modify new program

simpler: modify already used/shared program

4

viruses: infecting programs?
viruses infecting other programs seems less common

(but hard to get good statistics…)

but producing infected versions of legitimate software is common
e.g. fake download site

techniques for automated infection similar to manual infection

5

virus prevalence
viruses on commerically sold software media
from 1990 memo by Chris McDonald:
4. MS-DOS INFECTIONS

SOFTWARE REPORTING LOCATION DATE VIRAL INFECTION

a. Unlock Masterkey Kennedy Space Center Oct 89 Vienna
b. SARGON III Iceland Sep 89 Cascade (1704)
c. ASYST RTDEMO02.EXE Fort Belvoir Aug 89 Jerusalem-B
d. Desktop Fractal Various Jan 90 Jerusalem (1813)

Design System
e. Bureau of the Government Printing Jan 90 Jerusalem-B

Census, Elec. County Office/US Census Bureau
& City Data Bk., 1988

f. Northern Computers Iceland Mar 90 Disk Killer
(PC Manufacturer shipped infected systems.)

5. MACINTOSH INFECTIONS

SOFTWARE REPORTING LOCATION DATE VIRAL INFECTION

a. NoteWriter Colgate College Sep 89 Scores and nVIR
.......

https://groups.google.com/forum/#!original/comp.virus/XJCfYR9T6nI/azflHz5goooJ 6

early virus motivations
lots of (but not all) early virus software was “for fun”

not trying to monetize malware
(like is common today)

hard: Internet connections uncommon

7

Case Study: Vienna Virus
Vienna: virus from the 1980s

This version: published in Ralf Burger, “Computer Viruses: a
high-tech disease” (1988)

targetted COM-format executables on DOS

8

Diversion: .COM files
.COM is a very simple executable format

no header, no segments, no sections

file contents loaded at fixed address 0x0100

execution starts at 0x0100

everything is read/write/execute (no virtual memory)

9

Vienna: infection

0x0100:
mov $0x4f28, %cx
/* b9 28 4f */

0x0103:
mov $0x9e4e, %si
/* be 4e 9e */
mov %si, %di
push %ds
/* more normal

program
code */

....
0x0700: /* end */

uninfected 0x0100: jmp 0x0700
0x0103: mov $0x9e4e, %si
...
0x0700:

push %cx
... // %si <- 0x903
mov $0x100, %di
mov $3, %cx
rep movsb
...
mov $0x0100, %di
push %di
xor %di, %di
ret

...
0x0903:

.bytes 0xb9 0x28 0x4f
...

infected

10

Vienna: infection

0x0100:
mov $0x4f28, %cx
/* b9 28 4f */

0x0103:
mov $0x9e4e, %si
/* be 4e 9e */
mov %si, %di
push %ds
/* more normal

program
code */

....
0x0700: /* end */

uninfected 0x0100: jmp 0x0700
0x0103: mov $0x9e4e, %si
...
0x0700:

push %cx
... // %si <- 0x903
mov $0x100, %di
mov $3, %cx
rep movsb
...
mov $0x0100, %di
push %di
xor %di, %di
ret

...
0x0903:

.bytes 0xb9 0x28 0x4f
...

infected

10

Vienna: “fixup”
0x0700:

push %cx // initial value of %cx matters??
mov $0x8fd, %si // %si <- beginning of data
mov %si, %dx // save %si

// movsb uses %si, so
// can't use another register

add $0xa, %si // offset of saved code in data
mov $0x100, %di // target address
mov $3, %cx // bytes changed
/* copy %cx bytes from (%si) to (%di) */
rep movsb
...

...
// saved copy of original application code
0x903: .byte 0xb9 .byte 0x28 .byte 0x4f 11

Vienna: “fixup”
0x0700:

push %cx // initial value of %cx matters??
mov $0x8fd, %si // %si <- beginning of data
mov %si, %dx // save %si

// movsb uses %si, so
// can't use another register

add $0xa, %si // offset of saved code in data
mov $0x100, %di // target address
mov $3, %cx // bytes changed
/* copy %cx bytes from (%si) to (%di) */
rep movsb
...

...
// saved copy of original application code
0x903: .byte 0xb9 .byte 0x28 .byte 0x4f 11

Vienna: “fixup”
0x0700:

push %cx // initial value of %cx matters??
mov $0x8fd, %si // %si <- beginning of data
mov %si, %dx // save %si

// movsb uses %si, so
// can't use another register

add $0xa, %si // offset of saved code in data
mov $0x100, %di // target address
mov $3, %cx // bytes changed
/* copy %cx bytes from (%si) to (%di) */
rep movsb
...

...
// saved copy of original application code
0x903: .byte 0xb9 .byte 0x28 .byte 0x4f 11

Vienna: return
0x08e7:

pop %cx // restore initial value of %cx, %sp
xor %ax, %ax // %ax <- 0
xor %bx, %bx
xor %dx, %dx
xor %si, %si
// push 0x0100
mov $0x0100, %di
push %di
xor %di, %di // %di <- 0
// pop 0x0100 from stack
// jmp to 0x0100
ret

question: why not just jmp 0x0100 ?
12

Vienna: infection outline
Vienna appends code to infected application

where does it read the code come from?

how is code adjusted for new location in the binary?
what linker would do

how does it keep files from getting infinitely long?

13

Vienna: infection outline
Vienna appends code to infected application

where does it read the code come from?

how is code adjusted for new location in the binary?
what linker would do

how does it keep files from getting infinitely long?

14

quines
exercise: write a C program that outputs its source code

(pseudo-code only okay)

possible in any (Turing-complete) programming language

called a “quine”

15

clever quine solution
#include <stdio.h>
char*x="int main(){

printf(p,10,34,x,34,10,34,p,34,10,x,10);
}";

char*p="#include <stdio.h>%c
char*x=%c%s%c;%cchar*p=%c%s%c;
%c%s%c";

int main(){
printf(p,10,34,x,34,10,34,p,34,10,x,10);

}

some line wrapping for readability — shouldn’t be in actual quine

printf to fill template:
10 = newline; 34 = double-quote;
x, p = template/constant strings

template filled by printf

16

clever quine solution
#include <stdio.h>
char*x="int main(){

printf(p,10,34,x,34,10,34,p,34,10,x,10);
}";

char*p="#include <stdio.h>%c
char*x=%c%s%c;%cchar*p=%c%s%c;
%c%s%c";

int main(){
printf(p,10,34,x,34,10,34,p,34,10,x,10);

}

some line wrapping for readability — shouldn’t be in actual quine

printf to fill template:
10 = newline; 34 = double-quote;
x, p = template/constant strings

template filled by printf

16

clever quine solution
#include <stdio.h>
char*x="int main(){

printf(p,10,34,x,34,10,34,p,34,10,x,10);
}";

char*p="#include <stdio.h>%c
char*x=%c%s%c;%cchar*p=%c%s%c;
%c%s%c";

int main(){
printf(p,10,34,x,34,10,34,p,34,10,x,10);

}

some line wrapping for readability — shouldn’t be in actual quine

printf to fill template:
10 = newline; 34 = double-quote;
x, p = template/constant strings

template filled by printf

16

dumb quine solution
#include <stdio.h>
int main(void) {

char buffer[1024];
FILE *f = fopen("quine.c", "r");
size_t bytes = fread(buffer, 1,

sizeof(buffer), f);
fwrite(buffer, 1, bytes, stdout);
return 0;

}

a lot more straightforward!

but “cheating”

17

Vienna copying
mov $0x8f9, %si // %si = beginning of virus data
...
mov $0x288, %cx // length of virus
mov $0x40, %ah // system call # for write
mov %si, %dx
sub $0x1f9, %dx // %dx = beginning of virus code
int 0x21 // make write system call

18

Vienna copying
mov $0x8f9, %si // %si = beginning of virus data
...
mov $0x288, %cx // length of virus
mov $0x40, %ah // system call # for write
mov %si, %dx
sub $0x1f9, %dx // %dx = beginning of virus code
int 0x21 // make write system call

18

Vienna: infection outline
Vienna appends code to infected application

where does it read the code come from?

how is code adjusted for new location in the binary?
what linker would do

how does it keep files from getting infinitely long?

19

Vienna relocation
// set virus data address:
0x700: mov $0x8f9, %si

// machine code: be f9 08
// be: opcode
// f9 08: immediate

...
// %ax contains file length (of file to infect)
mov %ax, %cx
...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di // %di <- 0x701
mov %cx, (%di) // update mov instruction
...

Vienna design: need to access global variables, etc.
solution: base pointer for virus data
problem: location changes depending on where virus is

20

Vienna relocation
// set virus data address:
0x700: mov $0x8f9, %si

// machine code: be f9 08
// be: opcode
// f9 08: immediate

...
// %ax contains file length (of file to infect)
mov %ax, %cx
...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di // %di <- 0x701
mov %cx, (%di) // update mov instruction
...

Vienna design: need to access global variables, etc.
solution: base pointer for virus data
problem: location changes depending on where virus is

20

Vienna relocation
// set virus data address:
0x700: mov $0x8f9, %si

// machine code: be f9 08
// be: opcode
// f9 08: immediate

...
// %ax contains file length (of file to infect)
mov %ax, %cx
...
add $0x2f9, %cx
mov %si, %di
sub $0x1f7, %di // %di <- 0x701
mov %cx, (%di) // update mov instruction
...

Vienna design: need to access global variables, etc.
solution: base pointer for virus data
problem: location changes depending on where virus is

20

Vienna relocation
edit actual code for mov

why doesn’t this disrupt virus execution?

already ran that instruction

21

Vienna relocation
edit actual code for mov

why doesn’t this disrupt virus execution?
already ran that instruction

21

Vienna relocation
0x700: mov $0x8f9, %si
...
// %ax contains file length
// (of file to infect)
mov %ax, %cx
sub $3, %ax
// update template jmp instruction
mov %ax, 0xe(%si) // 0xe + %si = 0x907
...
mov $40, %ah
mov $3, %cx
mov %si, %dx
add $0xD, %dx // dx <- 0x906
int 0x21 // system call: write 3 bytes from 0x906
...
0x906: e9 fd 05 // jmp PC+FD 05

22

Vienna relocation
0x700: mov $0x8f9, %si
...
// %ax contains file length
// (of file to infect)
mov %ax, %cx
sub $3, %ax
// update template jmp instruction
mov %ax, 0xe(%si) // 0xe + %si = 0x907
...
mov $40, %ah
mov $3, %cx
mov %si, %dx
add $0xD, %dx // dx <- 0x906
int 0x21 // system call: write 3 bytes from 0x906
...
0x906: e9 fd 05 // jmp PC+FD 05

22

Vienna relocation
0x700: mov $0x8f9, %si
...
// %ax contains file length
// (of file to infect)
mov %ax, %cx
sub $3, %ax
// update template jmp instruction
mov %ax, 0xe(%si) // 0xe + %si = 0x907
...
mov $40, %ah
mov $3, %cx
mov %si, %dx
add $0xD, %dx // dx <- 0x906
int 0x21 // system call: write 3 bytes from 0x906
...
0x906: e9 fd 05 // jmp PC+FD 05

22

alternative relocation
could avoid having pointer to update:
0000000000000000 <next-0x3>:

0: e8 00 00 call 3 <next>
target addresses encoded relatively
pushes return address (next) onto stack

0000000000000003 <next>:
3: 59 pop %cx
cx containts address of the pop instruction

why didn’t Vienna do this?

23

Vienna: infection outline
Vienna appends code to infected application

where does it read the code come from?

how is code adjusted for new location in the binary?
what linker would do

how does it keep files from getting infinitely long?

24

Vienna: avoiding reinfection
scans through active directories for executables

“marks” infected executables in file metadata
could have checked for virus code — but slow

25

DOS last-written times
16-bit number for date; 16-bit number for time

15 9 8 5 4 0
Y-1980 Mon Day

15 11 10 5 4 0
H Min Sec/2

Sec/2: 5 bits: range from 0–31
corresponds to 0 to 62 seconds

Vienna trick: set infected file times to 62 seconds

need to update times anyways — hide tracks

26

DOS last-written times
16-bit number for date; 16-bit number for time

15 9 8 5 4 0
Y-1980 Mon Day

15 11 10 5 4 0
H Min Sec/2

Sec/2: 5 bits: range from 0–31
corresponds to 0 to 62 seconds

Vienna trick: set infected file times to 62 seconds

need to update times anyways — hide tracks

26

where to put code
viruses insert code in other programs
Vienna’s choice: end of executables
search for .COM executables on system

considerations for other options:
spreading: identifying useful files to infect

will be copied elsewhere?
will be run?

stealth: avoiding detection
Vienna: file size changes — easy to find?
Vienna: weird modification time — easy to find? 27

where to put code: options
one or more of:

replacing executable code

after executable code (Vienna)

in unused executable code

inside OS code

in memory

replace existing code

28

where to put code: options
one or more of:

replacing executable code

after executable code (Vienna)

in unused executable code

inside OS code

in memory

replace existing code

29

replace executable

original
executable

virus code

30

replace executable?
seems silly — not stealthy!

has appeared in the wild — ILOVEYOU

2000 ILOVEYOU Worm
written in Visual Basic (!)
spread via email
replaced lots of files with copies of itself

huge impact — because destroying data to copy itself

31

replace executable — subtle

original
executable

virus code
run original from tempfile

original
executable

32

where to put code: options
one or more of:

replacing executable code

after executable code (Vienna)

in unused executable code

inside OS code

in memory

replace existing code

33

appending

original
executable

original
executable

virus code

jmp to virus

34

appending and executable formats
COM files are very simple — no metadata

modern executable formats have length information to update:

option 1: add segment (ELF LOAD) to program header
(often a little extra space after program header, due to page-alignment)

option 2: update last segment of program header
change its size
make it executable if it isn’t (and often not — often data)

35

where to put code: options
one or more of:

replacing executable code

after executable code (Vienna)

in unused executable code

inside OS code

in memory

replace existing code

36

unused code???
why would a program have unused code????

37

unused code case study: /bin/ls
unreachable no-ops!
...

403788: e9 59 0c 00 00 jmpq 4043e6 <__sprintf_chk@plt+0x1a06>
40378d: 0f 1f 00 nopl (%rax)
403790: ba 05 00 00 00 mov $0x5,%edx

...
403ab9: eb 4d jmp 403b08 <__sprintf_chk@plt+0x1128>
403abb: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)
403ac0: 4d 8b 7f 08 mov 0x8(%r15),%r15

...
404a01: c3 retq
404a02: 0f 1f 40 00 nopl 0x0(%rax)
404a06: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)
404a0d: 00 00 00
404a10: be 00 e6 61 00 mov $0x61e600,%esi

...

38

why empty space?
Intel Optimization Reference Manual:
“Assembly/Compiler Coding Rule 12. (M impact, H
generality)
All branch targets should be 16-byte aligned.”

better for instruction cache (and TLB and related caches)

better for instruction decode logic

function calls, jumps count as branches for this purpose

39

why weird nops
could fill with anything — unreachable

some platforms: filled with crashing instructions

why not in example? assembler just told to align instruction
not told previous instruction was jump/ret/etc. …
and assembler doesn’t bother checking

probably better for CPU to fill with some instruction; Intel manual:
“Placing data immediately following an indirect branch can cause
performance problems. If the data consists of all zeros, it looks like a
long stream of ADDs to memory destinations, and this can cause
resource conflicts…”

40

other empty space
unused dynamic linking structure

unused space between segments

unused debugging/symbol table information?

unused header space
file offsets of segments can be in middle of header
loader doesn’t care what segments “mean”

41

other empty space
unused dynamic linking structure

unused space between segments

unused debugging/symbol table information?

unused header space
file offsets of segments can be in middle of header
loader doesn’t care what segments “mean”

42

dynamic linking cavity
.dynamic section — data structure used by dynamic linker:

format: list of 8-byte type, 8-byte value
terminated by type == 0 entry

Contents of section .dynamic:
600e28 01000000 00000000 01000000 00000000

... several non-empty entries ...
600f88 f0ffff6f 00000000 56034000 00000000 ...o....V.@.....

VERSYM (required library version info at) 0x400356
600f98 00000000 00000000 00000000 00000000

NULL --- end of linker info
600fa8 00000000 00000000 00000000 00000000

unused! (and below)
600fb8 00000000 00000000 00000000 00000000
600fc8 00000000 00000000 00000000 00000000
600fd8 00000000 00000000 00000000 00000000
600fe8 00000000 00000000 00000000 00000000

43

is there enough empty space?
cavities look awfully small

really small viruses?

solution: chain cavities tgoether

44

case study: CIH (1)

original
executable

virus startup code
virus code locs

virus code part 1

virus code part 2

virus code part 3

45

case study: CIH (2)
on disk:

virus startup code
virus code locs

virus code part 1

virus code part 2

virus code part 3

in memory:

virus code part 1
virus code part 2
virus code part 3

46

CIH cavities
gaps between sections

common Windows linker aligned sections
(align = start on address multiple of N , e.g. 4096)

reassembling code avoids worrying about splitting instructions

47

segment rounding
objdump -x /bin/ls:

LOAD off 0x0000000000004000 vaddr 0x0000000000004000 paddr 0x0000000000004000 align 2**12
filesz 0x0000000000013091 memsz 0x0000000000013091 flags r-x

LOAD off 0x0000000000018000 vaddr 0x0000000000018000 paddr 0x0000000000018000 align 2**12
filesz 0x0000000000007458 memsz 0x0000000000007458 flags r--

running /bin/ls in gdb:
(gdb) info proc map
process 1178818
Mapped address spaces:

Start Addr End Addr Size Offset Perms objfile
0x555555554000 0x555555558000 0x4000 0x0 r--p /usr/bin/ls
0x555555558000 0x55555556c000 0x14000 0x4000 r-xp /usr/bin/ls
0x55555556c000 0x555555574000 0x8000 0x18000 r--p /usr/bin/ls

....

requested 0x13091 bytes, loaded 0x14000
x86-64 Linux: OS allocates only in one page = 4096-byte chunks

48

segment rounding
objdump -x /bin/ls:

LOAD off 0x0000000000004000 vaddr 0x0000000000004000 paddr 0x0000000000004000 align 2**12
filesz 0x0000000000013091 memsz 0x0000000000013091 flags r-x

LOAD off 0x0000000000018000 vaddr 0x0000000000018000 paddr 0x0000000000018000 align 2**12
filesz 0x0000000000007458 memsz 0x0000000000007458 flags r--

running /bin/ls in gdb:
(gdb) info proc map
process 1178818
Mapped address spaces:

Start Addr End Addr Size Offset Perms objfile
0x555555554000 0x555555558000 0x4000 0x0 r--p /usr/bin/ls
0x555555558000 0x55555556c000 0x14000 0x4000 r-xp /usr/bin/ls
0x55555556c000 0x555555574000 0x8000 0x18000 r--p /usr/bin/ls

....

requested 0x13091 bytes, loaded 0x14000
x86-64 Linux: OS allocates only in one page = 4096-byte chunks

48

segment rounding
objdump -x /bin/ls:

LOAD off 0x0000000000004000 vaddr 0x0000000000004000 paddr 0x0000000000004000 align 2**12
filesz 0x0000000000013091 memsz 0x0000000000013091 flags r-x

LOAD off 0x0000000000018000 vaddr 0x0000000000018000 paddr 0x0000000000018000 align 2**12
filesz 0x0000000000007458 memsz 0x0000000000007458 flags r--

running /bin/ls in gdb:
(gdb) info proc map
process 1178818
Mapped address spaces:

Start Addr End Addr Size Offset Perms objfile
0x555555554000 0x555555558000 0x4000 0x0 r--p /usr/bin/ls
0x555555558000 0x55555556c000 0x14000 0x4000 r-xp /usr/bin/ls
0x55555556c000 0x555555574000 0x8000 0x18000 r--p /usr/bin/ls

....

requested 0x13091 bytes, loaded 0x14000
x86-64 Linux: OS allocates only in one page = 4096-byte chunks

48

where to put code: options
one or more of:

replacing executable code

after executable code (Vienna)

in unused executable code

inside OS code

in memory

replace existing code

49

boot process
processor reset

BIOS/EFI
(chip on motherboard)

bootloader

operating system

very CPU/motherboard-specific code

fixed location on disk
code that understands files

files in a filesystem

50

boot process
processor reset

BIOS/EFI
(chip on motherboard)

bootloader

operating system

very CPU/motherboard-specific code

fixed location on disk
code that understands files

files in a filesystem

50

bootloaders in the DOS era
used to be common to boot from floppies

default to booting from floppy if present
even if hard drive to boot from

applications distributed as bootable floppies

so bootloaders on all devices were a target for viruses

51

historic bootloader layout
bootloader in first sector (512 bytes) of device

(along with partition information)

code in BIOS to copy bootloader into RAM, start running

bootloader responsible for disk I/O etc.
some library-like functionality in BIOS for I/O

52

bootloader viruses
example: Stoned

data here???

partition table

bootloader
partition table

virus code

saved bootloader
partition table (unused)

53

bootloader viruses
example: Stoned

data here???

partition table

bootloader
partition table

virus code

saved bootloader
partition table (unused)

53

data here???
might be data there — risk

some unused space after partition table/boot loader common
(allegedly)

also be filesystem metadata not used on smaller floppies/disks

but could be wrong — oops

54

modern bootloaders — UEFI
BIOS-based boot is going away (slowly)

new thing: UEFI (Universal Extensible Firmware Interface)

like BIOS:
library functionality for bootloaders
loads initial code from disk/DVD/etc.

unlike BIOS:
much more understanding of file systems
much more modern set of library calls

55

boot process
processor reset

BIOS/EFI
(chip on motherboard)

bootloader

operating system

very CPU/motherboard-specific code

fixed location on disk
code that understands files

files in a filesystem

56

BIOS/UEFI implants
infrequent

BIOS/UEFI code is very non-portable

BIOS/UEFI update may require physical access

BIOS/UEFI code may require cryptographic signatures

…but very hard to remove — “persist” other malware

reports of BIOS/UEFI-infecting “implants”
sold by Hacking Team (Milan-based malware company)
listed in leaked NSA Tailored Access Group catalog

57

boot process
processor reset

BIOS/EFI
(chip on motherboard)

bootloader

operating system

very CPU/motherboard-specific code

fixed location on disk
code that understands files

files in a filesystem

58

system files
simpliest strategy: stuff that runs when you start your computer

add a new startup program, run in the background
easy to blend in

alternatively, infect one of many system programs automatically run

59

memory residence
malware wants to keep doing stuff

one option — background process (easy on modern OSs)

also stealthy options:
insert self into OS code
insert self into other running programs

60

invoking virus code: options
boot loader

change starting location

alternative approaches: “entry point obscuring”

edit code that’s going to run anyways

replace a function pointer (or similar)

…

61

invoking virus code: options
boot loader

change starting location

alternative approaches: “entry point obscuring”

edit code that’s going to run anyways

replace a function pointer (or similar)

…

61

starting locations
/bin/ls: file format elf64-x86-64
/bin/ls
architecture: i386:x86-64, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x00000000004049a0

modern executable formats have ‘starting address’ field

just change it, insert jump to old address after virus code

62

run anyways?
add code at start of program (Vienna)

plus restore replaced code after running malware code

return with padding after it:
404a01: c3 retq
404a02: 0f 1f 40 00 nopl 0x0(%rax)

replace with
404a01: e9 XX XX XX XX jmpq YYYYYYY

plus return after running malware code

any random place in program?
just not in the middle of instruction
and replace orignal code after running malware code

63

challenge: valid locations
x86: probably don’t want a full instruction parser

x86: might be non-instruction stuff mixed in with code:
do_some_floating_point_stuff:

movss float_one(%rip), %xmm0
...
retq

float_one: .float 1

floating point value one (00 00 80 3f) is not valid machine code
disassembler might lose track of instruction boundaries

64

finding function calls
one idea: replace calls

normal x86 call FOO: E8 (32-bit value: PC - address
of foo)

could look for E8 in code — lots of false positives
probably even if one excludes out-of-range addresses

65

really finding function calls (1)
e.g. some popular compilers started x86-32 functions with
foo:

push %ebp // push old frame pointer
// 0x55
mov %esp, %ebp // set frame pointer to stack pointer
// 0x89 0xec

use to identify when e8 refers to real function
(full version: also have some other function start patterns)

66

really finding function calls (2)
x86-64 assembly seen a lot of ENDBR64 (hex f3 0f 1e fa)

marker for valid locations to jump to
intention: part of possible defense against
return-oriented-programming-style attacks
(we’ll talk about what this means later)

likely only seen at beginning of functions, switch statement cases,
etc.

67

run anyways?
add code at start of program (Vienna)

plus restore replaced code after running malware code

return with padding after it:
404a01: c3 retq
404a02: 0f 1f 40 00 nopl 0x0(%rax)

replace with
404a01: e9 XX XX XX XX jmpq YYYYYYY

plus return after running malware code

any random place in program?
just not in the middle of instruction
and replace orignal code after running malware code

68

restoring replaced code?
Vienna: just write to memory addres

modern OS: segfault/general protection fault
code loaded read-only

easy solution: make library call to make it writable
Linux: mprotect
functionality exists to, e.g., allow compiling code at runtime

69

infecting shared libraries via relocations

kernel32.dll

header
symbol table

GetFileAttributesA
…

kernel32.dll

header
symbol table

virus code

GetFileAttributesA
…

70

other dynamic-linking-based infections
could also modify

relocations on executable
this isn’t the global offset table entry for puts,
it’s the one for evilvirus

list of needed libraries?
the C standard library and virus.so
‘init’ code run when shared libraries loaded

stubs and calls to stub
very regular and easy to locate

71

summary
how to hide:

separate executable
append
existing “unused” space
append + compression

how to run:
change entry point (start address)
change calls
change beginning of function
change dynamic-linking-related pointers
arrange to run as part of OS

72

	self-replicating malware, generally
	virus: hide in existing programs
	motivation
	early prevalance/motivations

	case study: Vienna
	aside: COM files
	entry/exit
	infection outline
	writing your own code?
	aside: quines
	Vienna replication code

	Vienan relocation code
	Vienna's relocation code
	alternate: PIC

	avoiding reinfection

	viruses: where to put code
	replacing executables?
	appending/compressing
	cavaties
	chaining cavaties (CIH case study)
	segment rounding

	boot sector
	memory residence

	virus: getting code invoked
	changing start location
	overwrite existing code
	using dynamic linking features

	virus summary?

