
CS 6354 Sample Exam Qs Student ID:

1. Propose a way to modify or augment a cache to substantially reduce the miss rate
for each of the following kinds of cache misses:

• Compulsory misses (misses from the first access to some data); and
• Conflict misses (misses from replacing some data with other data that had to be

stored in the same part of the cache as other data, even though there was plenty of
capacity in the cache overall)

Your proposals must not substantially increase the storage required for the cache. For
example, if a cache stores around 10000 bytes, your proposal should not require adding
more than 128 bytes of storage to the cache.
(a) Compulsory misses.

(b) Conflict misses.

CS 6354 Sample Exam Qs Student ID:

2. For each of workloads listed below, is it likely to benefit substantially from simultaneous
multithreading (also known as hyperthreading) on an out-of-order processor? Briefly
explain your answer.
(a) A multithreaded webserver that spends most of its time performing I/O or reading

requests and responses to and from memory.

(b) A multithreaded, compute-bound linear-algebra application.

(c) A compute-bound linear algebra application which experiences a low cache miss
rate running on the same core as a breadth-first search of a graph with a high cache
miss rate.

Page 2

CS 6354 Sample Exam Qs Student ID:

3. For each of the following statements, identify whether it is true for VLIW (very long
instruction word) processors, superscalar (out-of-order, multiple issue) processors, both,
or neither:
(a) These processors are likely to require compilers to know about instruction latencies

to produce correct code.
© VLIW © superscalar © both © neither

(b) These processors can effectively used pipelined functional units.
© VLIW © superscalar © both © neither

(c) These processors can achieve a CPI (cycles per instruction) of less than one.
© VLIW © superscalar © both © neither

(d) A processor of this type can easily use an instruction set designed for an MIPS-like
in-order pipelined processor.
© VLIW © superscalar © both © neither

(e) A processor of this type is likely to use a technique like register renaming to help
identify inter-instruction dependencies.
© VLIW © superscalar © both © neither

Page 3

CS 6354 Sample Exam Qs Student ID:

4. Suppose we have an in-order, pipelined processor with the following stages:

1. Fetch (instruction cache)
2. Decode and register read
3. Execute, part 1
4. Execute, part 2
5. Memory (data cache), part 1
6. Memory (data cache), part 2
7. Writeback (register file write)

Suppose we execute a program with the following mix of executed instructions:

• 75% register-to-register arithmetic operations
• 15% loads
• 5% stores
• 5% branches

(a) Suppose the in-order processor does not do branch prediction, but instead stalls
in the fetch stage after every branch until the branch instruction finishes both
execute stages. Assuming there are no other reasons for pipeline stalls,
what number of cycles per instruction will we observe? Show your work.

Page 4

CS 6354 Sample Exam Qs Student ID:

(b) Suppose we add simple branch prediction to the in-order processor and it correctly
predicts 80% of branches. Assuming there are no other reasons for pipeline
stalls, what number of cycles per instruction will we observe? Show your work.

(c) Suppose two-thirds of the load instructions in the program are immediately followed
by a use of the resulting value as R1 in:

R1 ← M[R2]
R3 ← R1 + R8

Assuming there are no other reasons for pipeline stalls, what number of
cycles per instruction will we observe? Show your work.

Page 5

CS 6354 Sample Exam Qs Student ID:

(d) Rewrite the following assembly snippet to execute in the minimum number of
cycles on the processor. Assume all possible forwarding paths are implemented
on the processor. M[x] represents an access to memory at address x. Each line
represents a single instruction. Single letter variables represent registers.

X <− A * B
X <− X * C
Y <− D * E
Y <− Y * F
Z <− M[Q]
Z <− Z * X
Z <− Z * Y
M[Q] <− Z

Page 6

CS 6354 Sample Exam Qs Student ID:

5. Consider the following snippet of assembly for an out-of-order processor. M[x] represents
accessing memory at address x.

R1 <− R2 + R3 # (A)
R5 <− M[R1] # (B)
R6 <− R2 + R4 # (C)
R7 <− M[R4] # (D)
R8 <− R3 * R4 # (E)
R9 <− R7 * R6 # (F)
M[R5] <− R10 # (G)

Suppose a page fault occurs during instruction D and the reorder buffer contains the
following:

entry
#

instr. ready? logical reg-
ister

renamed
register

prev. renamed store? exception?

0 A yes R1 X9 X1 no no
1 B yes R5 X10 X5 no no
2 C no R6 X11 X6 no no
3 D no R7 X12 X7 no page fault
4 E yes R8 X13 X8 no no
5 F yes R9 X14 X9 no no
6 G yes — — — yes no

(Similar to the MIPS R10000 and gem5’s simulated processor, the processor uses a
large physical register file and register renaming rather than storing results directly in
the reorder buffer. Logical registers indicate the register specified in the instruction;
renamed registers represent the physical register chosen by register renaming. “Prev.
renamed” indicates the physical register assigned to the destination logical register before
the instruction was renamed.)
(a) What, if any, instructions which are not ready must be executed before the page

fault handler can be started?

(b) What will be done with the result computed by instruction E for logical register
R8? Will the value of physical register X13 change because of this?

Page 7

CS 6354 Sample Exam Qs Student ID:

(c) What will be done with the result computed by instruction B for R5? Will the
value of physical register X10 change because of this?

(d) Has memory been written by instruction G? Explain briefly.

Page 8

CS 6354 Sample Exam Qs Student ID:

6. (This question modified 2 December 2016 to add a third CPU.) Consider a three-
processor system with bidirectional point-to-point links connecting the processors. Each
processor has a write-back cache and has its own memory controller that talks to a
local memory. Assume the following timings:

• sending a message on processor-to-processor link takes 100 cycles (regardless of
length), and contention for the link is negligible

• writing a value to a local memory takes 50 cycles
• writing a value to a remote memory takes 150 cycles (the time to send a message

to the remote processor, plus the time to write the value)
• processing a message to send a reply takes negligible time, even if this requires

updating the local cache

Assume directories are managed by the cache of the processor local to that memory.
(a) Consider a write by processor A to a remote memory location if:

• processor A does not have the value in its cache
• processor B does have the value in its cache
• processor C does have the value in its cache
• the value in processor B’s cache is the same as memory
• the value in processor C’s cache is the same as memory

How long should this write take with a broadcast-based cache coherency protocol?
Show your work.

(b) How long should the write in the previous part take with a directory-based cache
coherency protocol? Show your work.

Page 9

CS 6354 Sample Exam Qs Student ID:

(c) How long should the write in the previous part take with a directory-based cache
coherency protocol if instead processor A, processor B, and processor C do not
have the value in its cache? Show your work.

Page 10

CS 6354 Sample Exam Qs Student ID:

(This question added 2 Dec 2016; updated 39 to 37 in table on 5 December) Consider
the following C function: (char is a one-byte type.)

char hugeArray[1024 * 1024 * 1024];
int testStride(int size, int stride) {

for (int iteration = 0; iteration < 10; ++iteration) {
for (int i = 0; i < size; i += stride) {

hugeArray[i] += 1;
}

}
}

Suppose we execute this function with varying parameters and an initially empty single-
level cache and TLB and observe the following results:

size stride TLB misses
(hugeArray only)

cache misses
(hugeArray only)

2 · 4096 4096 2 2
3 · 4096 4096 3 3
4 · 4096 4096 4 4
5 · 4096 4096 5 5
5 · 4096 2048 5 10
5 · 4096 1024 5 20
6 · 4096 4096 6 60
8 · 4096 4096 8 80
9 · 4096 4096 37 90
9 · 4096 2 · 4096 32 5
9 · 4096 4 · 4096 30 3
9 · 4096 8 · 4096 2 2

Assume the following:

• the system uses 4 kilobyte (4096 byte) pages
• TLB and cache accesses other than to hugeArray have no effect on the number

of misses for hugeArray accesses
• the system has a single-level page table
• the TLB and cache use a least-recently used replacement policy
• consecutive pages in virtual memory are mapped to consecutive pages in physical

memory
(a) What is the associativity of the TLB? Show your work.

Page 11

CS 6354 Sample Exam Qs Student ID:

(b) How many page table entries can be stored in the TLB? Show your work.

(c) What is the associativity of the cache? Show your work.

(d) What is the size of the cache? (Do not include metadata like valid bits.) Show
your work.

7. (This question added 2 December 2016) Consider the following snippet of assembly for
an out-of-order processor. M[x] represents accessing memory at address x.

R1 <− R2 + R3 # (A)
R5 <− M[R1] # (B)
R6 <− R2 + R4 # (C)
R7 <− M[R4] # (D)
R8 <− R3 * R4 # (E)
R9 <− R7 * R6 # (F)
M[R7] <− R10 # (G)

Page 12

CS 6354 Sample Exam Qs Student ID:

Suppose the processor has the following functional units:

• an integer ALU that is can do additions and multiplies in two cycles, but which
is fully pipelined to issue one operation per cycle

• a load/store unit that can accept one load or store per cycle

Given these functional units, how long will the processor take to execute the instructions
above? Show your work.

8. (a) (This question added 2 December 2016) Briefly explain when spin-locks, as com-
monly implemented using a ‘test-and-set’ instruction, would likely be preferable to
ticket locks or queue based locks implemented primarily using an atomic increment
instruction.

Page 13

