CS 6354: Memory Hierarchy |

29 August 2016



Survey results

set-associative caches (21 responses)

11(52.4%)

10

4(19%)

1(4.8%)

virtual memory (21 responses)

10

5(23.8%)

3(14.3%)

2 (9.5%) 2 (9.5%)



Processor/Memory Gap

100,000

10,000 +

1000

100 4

Performance

1980 1985 1990 1995 2000 2005 2010
Year

Figure 2.2 Starting with 1980 performance as a baseline, the gap in performance, measured as the difference in the time

between processor memory requests (for a single processor or core) and the latency of a DRAM access, is plotted over time.

Note that the vertical axis must be on a logarithmic scale to record the size of the processor-DRAM performance gap. The memory

baseline is 64 KB DRAM in 1980, with a 1.07 per year performance improvement in latency (see Figure 2.13 on page 99). The

processor line assumes a 1.25 improvement per year until 1986, a 1.52 improvement until 2000, a 1.20 improvement between 2000

and 2005, and no change in processor performance (on a per-core basis) between 2005 and 2010; see Figure 1.1 in Chapter 1. Figure: H&P Ch. 2

Convriaht © 2011 Elecevier Inc All riachte Recerved k]



Variety in memory technologies

SRAM

approx. 4—6 transitors/bit
optimized for speed

DRAM

approx. 1 transitor + capacitor/bit
optimized for density

Also smaller = faster

Goal: best performance and best capacity



Associativity

Fully associative: Direct mapped: Set associative:
block 12 can go block 12 can go block 12 can go
anywhere only into block 4 anywhere in set 0
(12 MOD 8) (12 MOD 4)
Block 01234567 Block 01234567 Block 01234567
no. no. no.
Cache

Set Set Set Set
o 1t 2 8
Block frame address

Block 1T1111111112
no. 012345678901234567890

Memory

Figure: H&P App. B



Cache Operation

R 177925 first way
| | |

OXJZ?&SLQZ}%? V| D | Tag |DataV| D | Tag |Data
tag mqex set 0 0 Ox1403 .. 0 |0x1504 ..

second way

[
'_l

! set 1

S 1[0 px1743] .. [1] 1 |ox1948 ..

I

W L2

! .
e
data (if hit)




Cache Flowchart

CACHE OPERATION FLOW CHART

Receive Virtual Address

Hash Page Number
Search TLB

Use Line Number
to Select Set
Read Out Address Tags

Compare Addresses

yes

Send Virtuat Address Update Rep T
to Tronslator Status in TLB ¥

I Update Replacement
Use Poge & Segment Tables |
I to qlgrunslalg Address | Stotus
Put 1n TLB

Send Real Address
to Main Memory

Recewe Line from
Main Memory

Select Correct
Bytes from Line

Store Line
in Cothe

Figure 3. Cache operation flow chart.



Virtual and Physical

Offset,

Virtual Page # Physical Page #

l

[ —

l

1 1

1 1
1 1
1 1

Index of Set? Index of Set?



Virtual and Physical

\\/irtual Page # Offset,

Physical Page #

l

|
|

1

.

1 ,

1 1 ‘

\ \ \

AY AY

\ N \
\ \
\ \
\ \

Index of Set? Index of Set?

Cache has virtual indexes?



Virtual and Physical

Virtual Page # Offset IPhysicaI Page #
i -
[

1
1
1
1
1
\
\

[ [

o

Index of Set? Index of Set?

Cache has virtual indexes?
Solution #1: Disallow overlap



Cache and TLB design

From translator

Virtyal | Real
Address| Address

cPU

Virtusl Address

Number

Line
Number

Page

Byte in
Line

}——- To tronsiator

Hash
Funclion

T

[Compare  Virtual
Addresses

Saselect

Logkaside
Buffer

Address

To

Main Memory

AN
2
AN
<
7 Cache
—y Address
S H H ( H a
VA Data
} Arrays
AV
y4
£ t
+ +
_=||r~4 Addresses & Select Du'ui

lv—Du'o

Byte Select & Align ]

Data Ot



Virtual and Physical

\\/irtual Page # Offset,

Physical Page #

l

— ——
M Index of Set?

Cache has virtual indexes?
Solution #1: Disallow overlap

Solution #2: Translate first



L1l: no overlap + L2: translate first

Virual address <64>

[ Virtual page number <50> [ Page offset <14> ]

[TLB tag compare address <43>[TLB index <7>] L1 cache index < >[Block offset <6>|

TLB tag <43> TLB data <26> |

L1 tag compare address <26>]

Physical address <40>

[ 2 tag compare address <21> [L2 cache index <14> | Biock offset <6>]

L2cache tag <21> | L2 data <512>

e ! '
e ToLL1 cache or P

Figure B.17 The overall picture of a hypothetical memory hierarchy going from virtual address to L2 cache access. The
page size is 16 KB. The TLB is two-way set associative with 256 entries. The L1 cache is a direct-mapped 16 KB, and the L2
cache is a four-way set associative with a total of 4 MB. Both use 64-byte blocks. The virtual address is 64 bits and the physical
address is 40 bits.

ar Inc. All richte Recerved 10

Convriaht © 2011 El

11



Virtual and Physical

Virtual Page #

Offset ~ Physical Page #

l

l

[ | [
Index of Set? M

Cache has virtual indexes?

1

1
1
1

Solution #1: Disallow overlap
Solution #2: Translate first

Solution #3: Allow virtual indexes (with overlap)

12



Virtually Indexed Caches Issues

13



Virtually Indexed Caches Issues

do tags store physical or virtual addresses?

13



Virtually Indexed Caches Issues

do tags store physical or virtual addresses?

what about page table changes?

13



Virtually Indexed Caches Issues

do tags store physical or virtual addresses?
what about page table changes?

two virtual addresses (aliasing) for same physical
address?

13



Types of Cache Misses

compulsory — first access
capacity — not enough space
conflict — enough space, but in wrong sets

(coherency — synchronizing between caches)

14



average memory access time
(AMAT)

AMAT = hit time + miss rate X miss penalty

15



Smith paper summary

Simulation study
Whole bunch of cache parameters

Optimize by applying simulation

16



The Smith paper’s simulator

Input?

17



The Smith paper’s simulator

Input?

What's missing?

17



miss rate versus AMAT

Every optimization has a complexity cost!

Can you figure that out from the paper we read?

18



miss rate or AMAT versus program
performance

How many memory accesses per instruction?

Evenly distributed?
What if all instructions have lots of computation?

What systems that can ‘hide’ misses with
speculation?

19



write stratagies

write-through — write on change

write-back — write on cache eviction
also known as copy-back

20



replacement policies

random
fifo

LRU approximations

if write-back:
write-allocate — bring into cache on write

no write-allocate — write-through if not yet in cache

21



write buffers

data no longer in cache but not yet in memory

need to be checked on reads

22



pipelined caches

Pipelined: start one cache access per cycle
Same latency (hit time), higher bandwidth

hit time

hit time

hit time hit time

time 23



Non-blocking

Non-blocking: “Hit under miss”; complete accesses
out-of-order

Best if CPU can work out-of-order

....................................... >

access time for miss

< >

hit time

time

24



Non-blocking improvement

-=- Hit-under-1-miss -4 Hit-under-2-misses -%- Hit-under-64-misses

100%
90%
80% -
T0% oo
B60% oo
50% -
40%

Cache acess latency

libquantum
cactusADM

GemsFDTD

»
o
m
Q
=
=
»
b
m
(o]
m
o

Figure 2.5 The effectiveness of a nonblocking cache is evaluated by allowing 1, 2, or 64 hits under a cache miss with 9
SPECINT (on the left) and 9 SPECFP (on the right) benchmarks. The data memory system modeled after the Intel i7 consists of a
32KB L1 cache with a four cycle access latency. The L2 cache (shared with instructions) is 256 KB with a 10 clock cycle access
latency. The L3 is 2 MB and a 36-cycle access latency. All the caches are eight-way set associative and have a 64-byte block size.
Allowing one hit under miss reduces the miss penalty by 9% for the integer benchmarks and 12.5% for the floating point. Allowing a
second hit improves these results to 10% and 16%, and allowing 64 results in little additional improvement.

25



Cache Optimizations

Improves

Technique Hit Miss  Hit Band-

time  penalty rate width
Increase block size N Y
Increase cache size N Y
Increase associavity N Y
Multilevel caches Y
Prioritize reads over writes Y
Virtual-index = Physical Y
Pipelined cache accesses Y
Non-blocking caches Y Y
Prefetching Y Y
Way-prediction Y

+ complexity costs

(adapted from tables in H&P B and H&P 2.2)

26



Cache Optimizations

Technique

" Increase block size
Increase cache size
Increase associavity
Multilevel caches
Prioritize reads over writes
Virtual-index = Physical
Pipelined cache accesses
Non-blocking caches
Prefetching
Way-prediction

Improves

Hit Miss  Hit Band-
time  penalty rate width

N Y
N Y
N Y

Y

Y
Y

Y

Y Y

Y Y
Y

+ complexity costs

(adapted from tables in H&P B and H&P 2.2)

26



Cache Optimizations

Improves

Technique Hit Miss  Hit Band-

time  penalty rate width
Increase block size N Y
Increase cache size N Y
Increase associavity N Y
Multilevel caches Y
Prioritize reads over writes Y
Virtual-index = Physical Y
Pipelined cache accesses Y
Non-blocking caches Y Y
Prefetching Y Y
Way-prediction Y

+ complexity costs

(adapted from tables in H&P B and H&P 2.2)

26



Choice of traces

APPENDIX. EXPLANATION OF TRACE

—-

N

w

-

o

o

NAMES
EDC PDP-11 trace of text editor,
written in C, compiled with C compiler
on PDP-11.
ROFFAS PDP-11 trace of text output
and formatting program. (called ROFF
or runoff).

. TRACE PDP-11 trace of program

tracer itself tracing EDC. (Tracer is
written in assembly language.)

FGO1 FORTRAN Go step, factor
analysis (1249 lines, single precision).
FGO2 FORTRAN Go step, double-
precision analysis of satellite informa-
tion, 2057 lines, FortG compiler.

FGO3 FORTRAN Go step, double-

precision numerical analysis, 840 lines,
FortG compiler.

FGO4 FORTRAN Go step, FFT of
hole in rotating body. Double-precision
FortG.

. CGO1 COBOL Go step, fixed-assets

program doing tax transaction selec-
tion.

CGO2 COBOL Go step, “fixed assets:
year end tax select.”

CGO3 COBOL Go step, projects de-
preciation of fixed assets.

. PGO2 PL/I Go step, does CCW anal-

ysis.

. IEBDG IBM utility that generates

test data that can be used in program
debugging. It will create multiple data
sets of whatever form and contents are
desired.

—
»

—
o

—

9.

FCOMP FORTRAN compile of pro-
gram that solves Reynolds partial dif-
ferential equation (2330 lines).
CCOMP COBOL compile. 240 lines,
accounting report.

. WATEX Execution of a FORTRAN

program compiled using the WATFIV
iler. The prog is a i

torial search routine.

WATFIV FORTRAN compilation

using the WATFIV compiler. (Com-

piles the program whose trace is the

WATEX trace.)

APL Execution of APL program

which does plots at a terminal.

FFT Execution of an FFT program

written in ALGOL, compiled using AL-

GOLW compiler at Stanford.

27



Mem hierarcht at ISCA’15-16 +
MICRO’15

SPECcpu x16

“compute-intensive”

NASA Parallel Benchmarks (NPB) x7
“from computational fluid dynamics (CFD)”

PARSEC x3

“multithreaded programs”

BioBench x3

“a diverse set of bioinformatics applications”

(+ more that appeared less than 3 times + any | missed)

28



Modern cache evaluation tools

CACTI — "[a]n integrated cache and memory
access time, cycle time, area, leakage, and dynamic
power model”

gemb — “a modular platform for computer-system
architecture research”

Marss86
Graphite
ESESC
Flexus

29



30



S-Box Problem

static const u32 Te0[256]

= { // 4KB table

Oxc66363a5U, Oxf87c7c84U, Oxee777799U, 0Oxf6Tl
Oxfff2f20dU, 0xd66b6bbdU, Oxde6f6fblU, Ox91cE
Ox60303050U, 0x02010103U, Oxce6767a9U, 0Ox562t
oxe7fefeloU, 0Oxb5d7d762U, Ox4dababe6U, OxecT¢

/) ...
sO@ = GETU32(in

sl = GETU32(in +
s2 = GETU32(in +

)
4)
8)

s3 = GETU32(in + 12)

/* round 1: x/
t0 = TeO[sO >> 24]

// ...

A

rk[0];
rk[1];
rk[2];
rk[3];

> > > >

Tel[ (sl >> 16) & Oxff] /

rk — round key — TOP SECRET

31



S-Box Problem

static const u32 Te0[256]

= { // 4KB table

Oxc66363a5U, Oxf87c7c84U, Oxee777799U, 0Oxf6Tl
Oxfff2f20dU, 0xd66b6bbdU, Oxde6f6fblU, Ox91cE
Ox60303050U, 0x02010103U, Oxce6767a9U, 0Ox562t
oxe7fefeloU, 0Oxb5d7d762U, Ox4dababe6U, OxecT¢

/) ...
sO@ = GETU32(in

sl = GETU32(in +
s2 = GETU32(in +

)
4)
8)

s3 = GETU32(in + 12)

/* round 1: x/
t0 = TeO[sO >> 24]

// ...

A

rk[0];
rk[1];
rk[2];
rk[3];

> > > >

Tel[(s1l >> 16) & Oxff] /

rk — round key — TOP SECRET

31



S-Box Problem

static const u32 Te0[256]

= { // 4KB table

Oxc66363a5U, Oxf87c7c84U, Oxee777799U, 0Oxf6Tl
Oxfff2f20dU, 0xd66b6bbdU, Oxde6f6fblU, Ox91cE
Ox60303050U, 0x02010103U, Oxce6767a9U, 0Ox562t
oxe7fefeloU, 0Oxb5d7d762U, Ox4dababe6U, OxecT¢

/) ...
s®@ = GETU32(in

sl = GETU32(in +
s2 = GETU32(in +

)
4)
8)

s3 = GETU32(in + 12)

/* round 1: x/
t0 = TeO[sO >> 24]

// ...

A

rk[0];
rk[1];
rk[2];
rk[3];

> > > >

Tel[(s1l >> 16) & Oxff] /

rk — round key — TOP SECRET

31



S-Box Problem

static const u32 Te0[256]

= { // 4KB table

Oxc66363a5U, Oxf87c7c84U, Oxee777799U, 0Oxf6Tl
Oxfff2f20dU, 0xd66b6bbdU, Oxde6f6fblU, Ox91cE
Ox60303050U, 0x02010103U, Oxce6767a9U, 0Ox562t
oxe7fefeloU, 0Oxb5d7d762U, Ox4dababe6U, OxecT¢

/) ...
sO@ = GETU32(in

sl = GETU32(in +
s2 = GETU32(in +

)
4)
8)

s3 = GETU32(in + 12)

/* round 1: x/
t0 = TeO[sO >> 24]

// ...

A

rk[0];
rk[1];
rk[2];
rk[3];

> > > >

Tel[ (sl >> 16) & Oxff] /

rk — round key — TOP SECRET

31



S-Box layout

Tag

Data

Tag

Data

32



S-Box layout

TeO[0]—Te[3]
Te0[4]—Tel[7]

Te®[8]—Te[11]

Tag

Data

Tag

Data

32



S-Box layout

Tag

Data|V

Tag

Data

77 +
TeO[0]—Te[3]

7?7 4+ return addr. + in[0]—in[4] +
TeO[4]—Te[7]

7?77 + saved registers +
TeO[8]—Te[11]

32



S-Box layout

V| Tag |Data|V| Tag |Data

7+

TeO[0]—Te[3]

777 + return addr. + in[0]—in[4] +
Te0[4]—Te[7]

7?77 + saved registers +
Te®[8]—Te[11]

7?7 includes: OS data structures; other programs; ..

32



S-Box layout

V| Tag |Data|V| Tag |Data

7?77 +

TeO[0]—Te[3]

??? + return addr. + in[0]—in[4] +
Te0[4]—Te[7]

7?77 + saved registers +
TeO[8]—Te[11]

7?7 includes: OS data structures; other programs; ..

varies depending on packet sizes, etc. — change 2



DJB’s advice for CPU designers

“document the performance of their chips”
“adding AES support to their instruction sets”
“adding an L1-table-lookup instruction”

“allow [] different action upon return from interrupt”

33



DJB'’s advice for AES implementors

“control the positions of [| variables in memory"
after “any uncontrolled code"”: reload S-box
“disabl[ing] hyperthreading”

“incorporate ... into the [] kernel”

“shift the stack” (relative to S-boxes)

make “each load” “take place in a separate cycle”

“Every new CPU poses a potential new challenge.”

34



Papers for Next Time

Jouppi, “Improving Direct-Mapped Cache
Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers”, 1990

Cook et al, “A Hardware Evaluation of Cache
Partitioning to Improve Utilization and

Energy-Efficiency while Preserving Responsiveness”,
2013

35



