
CS 6354: Memory Hierarchy I

29 August 2016

1

Survey results

2

Processor/Memory Gap

Copyright © 2011, Elsevier Inc. All rights Reserved. 3

Figure 2.2 Starting with 1980 performance as a baseline, the gap in performance, measured as the difference in the time
between processor memory requests (for a single processor or core) and the latency of a DRAM access, is plotted over time.
Note that the vertical axis must be on a logarithmic scale to record the size of the processor–DRAM performance gap. The memory
baseline is 64 KB DRAM in 1980, with a 1.07 per year performance improvement in latency (see Figure 2.13 on page 99). The
processor line assumes a 1.25 improvement per year until 1986, a 1.52 improvement until 2000, a 1.20 improvement between 2000
and 2005, and no change in processor performance (on a per-core basis) between 2005 and 2010; see Figure 1.1 in Chapter 1. Figure: H&P Ch. 2

3

Variety in memory technologies

SRAM
approx. 4–6 transitors/bit
optimized for speed

DRAM
approx. 1 transitor + capacitor/bit
optimized for density

…

Also smaller =⇒ faster
Goal: best performance and best capacity

4

Associativity

Figure: H&P App. B
5

Cache Operation

V D Tag Data V D Tag Data
1 0 0x1403 … 1 0 0x1504 …

1 0 0x1743 … 1 1 0x1948 …

set 0
set 1

set 2I − 1

first way second way
0419480x 27

tag index

= =

data (if hit)
6

Cache Flowchart

7

Virtual and Physical
Virtual Page # Physical Page #

Index of Set? Index of Set?

Offset

Cache has virtual indexes?
Solution #1: Disallow overlap
Solution #2: Translate first
Solution #3: Allow virtual indexes (with overlap)

8

Virtual and Physical
Virtual Page # Physical Page #

Index of Set? Index of Set?

Offset

Cache has virtual indexes?

Solution #1: Disallow overlap
Solution #2: Translate first
Solution #3: Allow virtual indexes (with overlap)

8

Virtual and Physical
Virtual Page # Physical Page #

Index of Set? Index of Set?

Offset

Cache has virtual indexes?
Solution #1: Disallow overlap

Solution #2: Translate first
Solution #3: Allow virtual indexes (with overlap)

8

Cache and TLB design

9

Virtual and Physical
Virtual Page # Physical Page #

Index of Set? Index of Set?

Offset

Cache has virtual indexes?
Solution #1: Disallow overlap
Solution #2: Translate first

Solution #3: Allow virtual indexes (with overlap)

10

L1: no overlap + L2: translate first

Copyright © 2011, Elsevier Inc. All rights Reserved. 10

Figure B.17 The overall picture of a hypothetical memory hierarchy going from virtual address to L2 cache access. The
page size is 16 KB. The TLB is two-way set associative with 256 entries. The L1 cache is a direct-mapped 16 KB, and the L2
cache is a four-way set associative with a total of 4 MB. Both use 64-byte blocks. The virtual address is 64 bits and the physical
address is 40 bits.

11

Virtual and Physical
Virtual Page # Physical Page #

Index of Set? Index of Set?

Offset

Cache has virtual indexes?
Solution #1: Disallow overlap
Solution #2: Translate first
Solution #3: Allow virtual indexes (with overlap)

12

Virtually Indexed Caches Issues

do tags store physical or virtual addresses?

what about page table changes?

two virtual addresses (aliasing) for same physical
address?

13

Virtually Indexed Caches Issues

do tags store physical or virtual addresses?

what about page table changes?

two virtual addresses (aliasing) for same physical
address?

13

Virtually Indexed Caches Issues

do tags store physical or virtual addresses?

what about page table changes?

two virtual addresses (aliasing) for same physical
address?

13

Virtually Indexed Caches Issues

do tags store physical or virtual addresses?

what about page table changes?

two virtual addresses (aliasing) for same physical
address?

13

Types of Cache Misses

compulsory — first access

capacity — not enough space

conflict — enough space, but in wrong sets

(coherency — synchronizing between caches)

14

average memory access time
(AMAT)

AMAT = hit time + miss rate × miss penalty

15

Smith paper summary

Simulation study

Whole bunch of cache parameters

Optimize by applying simulation

16

The Smith paper’s simulator

Input?

What’s missing?

17

The Smith paper’s simulator

Input?

What’s missing?

17

miss rate versus AMAT

Every optimization has a complexity cost!

Can you figure that out from the paper we read?

18

miss rate or AMAT versus program
performance

How many memory accesses per instruction?

Evenly distributed?

What if all instructions have lots of computation?

What systems that can ‘hide’ misses with
speculation?

19

write stratagies

write-through — write on change
write-back — write on cache eviction

also known as copy-back

20

replacement policies

random

fifo

LRU approximations

if write-back:
write-allocate — bring into cache on write

no write-allocate — write-through if not yet in cache

21

write buffers

data no longer in cache but not yet in memory

need to be checked on reads

22

pipelined caches

Pipelined: start one cache access per cycle
Same latency (hit time), higher bandwidth

Start
Access Step 1 Step 2 Finish

Access

Start
Access

Finish
Access

hit time

hit time

vs.
Start

Access Step 1 Step 2 Finish
Access

Start
Access Step 1 Step 2 Finish

Access

hit time hit time

time 23

Non-blocking

Non-blocking: “Hit under miss”; complete accesses
out-of-order

Best if CPU can work out-of-order

Start
Access Step 1 Step 2 Finish

Access
wait for next level

Start
Access

Finish
Access

access time for miss

hit time

time 24

Non-blocking improvement

Copyright © 2011, Elsevier Inc. All rights Reserved. 6

Figure 2.5 The effectiveness of a nonblocking cache is evaluated by allowing 1, 2, or 64 hits under a cache miss with 9
SPECINT (on the left) and 9 SPECFP (on the right) benchmarks. The data memory system modeled after the Intel i7 consists of a
32KB L1 cache with a four cycle access latency. The L2 cache (shared with instructions) is 256 KB with a 10 clock cycle access
latency. The L3 is 2 MB and a 36-cycle access latency. All the caches are eight-way set associative and have a 64-byte block size.
Allowing one hit under miss reduces the miss penalty by 9% for the integer benchmarks and 12.5% for the floating point. Allowing a
second hit improves these results to 10% and 16%, and allowing 64 results in little additional improvement. 25

Cache Optimizations
Improves

Technique Hit
time

Miss
penalty

Hit
rate

Band-
width

Increase block size N Y
Increase cache size N Y
Increase associavity N Y
Multilevel caches Y
Prioritize reads over writes Y
Virtual-index = Physical Y
Pipelined cache accesses Y
Non-blocking caches Y Y
Prefetching Y Y
Way-prediction Y

+ complexity costs
(adapted from tables in H&P B and H&P 2.2) 26

Cache Optimizations
Improves

Technique Hit
time

Miss
penalty

Hit
rate

Band-
width

Increase block size N Y
Increase cache size N Y
Increase associavity N Y
Multilevel caches Y
Prioritize reads over writes Y
Virtual-index = Physical Y
Pipelined cache accesses Y
Non-blocking caches Y Y
Prefetching Y Y
Way-prediction Y

+ complexity costs
(adapted from tables in H&P B and H&P 2.2) 26

Cache Optimizations
Improves

Technique Hit
time

Miss
penalty

Hit
rate

Band-
width

Increase block size N Y
Increase cache size N Y
Increase associavity N Y
Multilevel caches Y
Prioritize reads over writes Y
Virtual-index = Physical Y
Pipelined cache accesses Y
Non-blocking caches Y Y
Prefetching Y Y
Way-prediction Y

+ complexity costs
(adapted from tables in H&P B and H&P 2.2) 26

Choice of traces

27

Mem hierarcht at ISCA’15–16 +
MICRO’15
SPECcpu x16

“compute-intensive”

NASA Parallel Benchmarks (NPB) x7
“from computational fluid dynamics (CFD)”

PARSEC x3
“multithreaded programs”

BioBench x3
“a diverse set of bioinformatics applications”

(+ more that appeared less than 3 times + any I missed)
28

Modern cache evaluation tools

CACTI — “[a]n integrated cache and memory
access time, cycle time, area, leakage, and dynamic
power model”
gem5 — “a modular platform for computer-system
architecture research”
Marss86
Graphite
ESESC
Flexus
… 29

—

30

S-Box Problem

static const u32 Te0[256] = { // 4KB table
0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU,
0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U,
0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU,
0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU,

// ...
s0 = GETU32(in) ^ rk[0];
s1 = GETU32(in + 4) ^ rk[1];
s2 = GETU32(in + 8) ^ rk[2];
s3 = GETU32(in + 12) ^ rk[3];
/* round 1: */
t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[4];
// ...

rk — round key — TOP SECRET
in — input — assumed known

31

S-Box Problem

static const u32 Te0[256] = { // 4KB table
0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU,
0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U,
0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU,
0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU,

// ...
s0 = GETU32(in) ^ rk[0];
s1 = GETU32(in + 4) ^ rk[1];
s2 = GETU32(in + 8) ^ rk[2];
s3 = GETU32(in + 12) ^ rk[3];
/* round 1: */
t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[4];
// ...

rk — round key — TOP SECRET
in — input — assumed known

31

S-Box Problem

static const u32 Te0[256] = { // 4KB table
0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU,
0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U,
0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU,
0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU,

// ...
s0 = GETU32(in) ^ rk[0];
s1 = GETU32(in + 4) ^ rk[1];
s2 = GETU32(in + 8) ^ rk[2];
s3 = GETU32(in + 12) ^ rk[3];
/* round 1: */
t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[4];
// ...

rk — round key — TOP SECRET
in — input — assumed known

31

S-Box Problem

static const u32 Te0[256] = { // 4KB table
0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU,
0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U,
0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU,
0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU,

// ...
s0 = GETU32(in) ^ rk[0];
s1 = GETU32(in + 4) ^ rk[1];
s2 = GETU32(in + 8) ^ rk[2];
s3 = GETU32(in + 12) ^ rk[3];
/* round 1: */
t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[4];
// ...

rk — round key — TOP SECRET
in — input — assumed known

31

S-Box layout

V Tag Data V Tag Data

Te0[0]—Te[3]

Te0[4]—Te[7]

Te0[8]—Te[11]

??? +

??? + return addr. + in[0]—in[4] +

??? + saved registers +

??? includes: OS data structures; other programs; …
varies depending on packet sizes, etc. — change
memory layout

32

S-Box layout

V Tag Data V Tag Data
Te0[0]—Te[3]

Te0[4]—Te[7]

Te0[8]—Te[11]

??? +

??? + return addr. + in[0]—in[4] +

??? + saved registers +

??? includes: OS data structures; other programs; …
varies depending on packet sizes, etc. — change
memory layout

32

S-Box layout

V Tag Data V Tag Data
Te0[0]—Te[3]

Te0[4]—Te[7]

Te0[8]—Te[11]

??? +

??? + return addr. + in[0]—in[4] +

??? + saved registers +

??? includes: OS data structures; other programs; …
varies depending on packet sizes, etc. — change
memory layout

32

S-Box layout

V Tag Data V Tag Data
Te0[0]—Te[3]

Te0[4]—Te[7]

Te0[8]—Te[11]

??? +

??? + return addr. + in[0]—in[4] +

??? + saved registers +

??? includes: OS data structures; other programs; …

varies depending on packet sizes, etc. — change
memory layout

32

S-Box layout

V Tag Data V Tag Data
Te0[0]—Te[3]

Te0[4]—Te[7]

Te0[8]—Te[11]

??? +

??? + return addr. + in[0]—in[4] +

??? + saved registers +

??? includes: OS data structures; other programs; …
varies depending on packet sizes, etc. — change
memory layout 32

DJB’s advice for CPU designers

“document the performance of their chips”

“adding AES support to their instruction sets”

“adding an L1-table-lookup instruction”

“allow [] different action upon return from interrupt”

33

DJB’s advice for AES implementors

“control the positions of [] variables in memory”

after “any uncontrolled code”: reload S-box

“disabl[ing] hyperthreading”

“incorporate … into the [] kernel”

“shift the stack” (relative to S-boxes)

make “each load” “take place in a separate cycle”

“Every new CPU poses a potential new challenge.”

34

Papers for Next Time

Jouppi, “Improving Direct-Mapped Cache
Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers”, 1990

Cook et al, “A Hardware Evaluation of Cache
Partitioning to Improve Utilization and
Energy-Efficiency while Preserving Responsiveness”,
2013

35

