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Memory Hierarchy
Registers
L1 cache
L2 cache
L3 cache

main
memory

< 1 ns
∼ 1 ns
∼ 5 ns

∼ 20 ns
∼ 100 ns

Image: approx 2004 AMD press image of Opteron die
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Last time

Smith, “Cache memories”
Trace-based simulation of lots of cache parameters
Overlap virtual to physical lookup and cache lookup

Bernstein, “Cache timing attacks on AES”
Fighting for constant-time (with respect to secrets)
Suggestions for architects
Suggestions for crypto implementors
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Last time: Cache optimizations
Improves

Technique Hit
time

Miss
penalty

Hit
rate

Band-
width

Increase block size N Y
Increase cache size N Y
Increase associavity N Y
Multilevel caches Y
Prioritize reads over writes Y
Virtual-index = Physical Y
Pipelined cache accesses Y
Non-blocking caches Y Y
Prefetching Y Y
Way-prediction Y

+ complexity costs
(adapted from tables in H&P B and H&P 2.2) 4



Homework 1

Checkpoint due 12 September
Intuition: 32KB much faster than 34KB, then 32KB
cache
Required for checkpoint:

* For each data or unified (data and instruction) cache:
- The size of that cache
- The size of blocks (AKA lines) in that cache

* For each data or unified TLB:
- The size (number of entries) of that TLB

* The single-core sequential throughput (read and write)
of main memory

* The single-core random throughput (read and write) of
main memory
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Avoiding associativity

tag index offset

=

cache

tag

calcuation step 1data

buffer

execution step 2
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Way prediction

tag index offset

select tag

cache way 1 cache way 2

tag

predict way

calcuation step 1

data

buffer

execution step 2

instruction ptr, …
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Why not direct-mapped?
Virtual Page # Physical Page #

Index of Set? Index of Set?

Offset

Avoid virtual caches

Mitigation: way prediction

Different HW speed tradeoffs today?
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Victim Caches

V Tag Data

1 0x1000x2000x300AA BBCC DDEE FF
V Address Data

1 0x1006 AA BB
1 0x10060x2006AA BBCC DD

Access
pattern:
0x1006
0x2006
0x3006
0x2006
0x1006

Direct-mapped Cache

Victim Cache
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Different kinds of memory

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7FFF …

0x0000 0000 0040 0000

Used by OS
Virtual memory

Stack
Memory mappings
Writable data

Code + Constants

Conflict in low-order bits?
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Old prefetch strategies

Prefetch always

Fetch next on miss

Tagged prefetch — next on non-prefetch use

Common goal: sequential access patterns
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Sequential access patterns

Examples?

Instructions

Dense matrix/array math

String processing

Some database operations
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Stream buffers

hit: shift up
miss: clear
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Multi-way stream buffers

hit: shift up
miss: clear LRU
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Performance Results
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Prefetching on recent Intel (1)
From the Intel Optimization Manual on Sandy Bridge:

Two hardware prefetchers load data to the L1 DCache:
• Data cache unit (DCU) prefetcher. This prefetcher … is
triggered by an ascending access to very recently loaded data.
…
• Instruction pointer (IP)-based stride prefetcher. This
prefetcher keeps track of individual load instructions. If a load
instruction is detected to have a regular stride, then a
prefetch is sent to the next address which is the sum of the
current address and the stride. …
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Prefetching on recent Intel (2)
From the Intel Optimization Manual on Sandy Bridge:

The following two hardware prefetchers fetched data from
memory to the L2 cache and last level cache:
Spatial Prefetcher: This prefetcher strives to complete
every cache line fetched to the L2 cache with the pair line
that completes it to a 128-byte aligned chunk.
Streamer: This prefetcher monitors read requests from the
L1 cache for ascending and descending sequences of
addresses. Monitored read requests include … load and store
operations and … the [L1] hardware prefetchers, and … code
fetch.
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Sandy Bridge die

via anandtech (original is Intel press photo??)
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Within each core

Image: Intel’s Optimization Reference Manual
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Cook’s Benchmark Categorization

Number of threads

Last level cache size

Prefetchers

Memory bandwidth
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Interference between programs
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Why a shared last-level cache?
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Sandy Bridge’s cache partitioning

12-way cache
way — ‘column’ of set-associative cache
each way is like a direct-mapped cache

Mask for which ways are used to store things on miss
LLC: Way 1

0.5 MB
Way 2
0.5 MB

Way 3
0.5 MB

Way 4
0.5 MB

Way 5
0.5 MB

Way 6
0.5 MB

Way 7
0.5 MB

Way 8
0.5 MB

Way 9
0.5 MB

Way 10
0.5 MB

Way 11
0.5 MB

Way 12
0.5 MB

foreground application
mask 1111 1000 0000

background application
mask 0000 0111 1111
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Page coloring

0101 1111
110110
1111 11

100011 0000 0000 …

Physical Page #

Index of Set

Offset

cache indices 0x000–0x3FF
cache indices 0x400–0x7FF
cache indices 0x800–0xBFF
cache indices 0xCFF–0xFFF

cache (possibly direct-mapped)

Page colors:
00, 01, 10, 11
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Experiment Design

25

Energy: Race-to-Halt
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Phases
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Dynamic partitioning

Dynamic partitioning inputs:
LLC misses over 100 ms, every 100 ms

Thresholds for detecting changes

Increase to max allocation — then decrease slowly
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Reproducibility
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