CS 6354: Memory Hierarchy II

31 August 2016

Memory Hierarchy

Last time

Smith, "Cache memories"

Trace-based simulation of lots of cache parameters Overlap virtual to physical lookup and cache lookup

Bernstein, "Cache timing attacks on AES" Fighting for constant-time (with respect to secrets) Suggestions for architects Suggestions for crypto implementors

Last time: Cache optimizations

Improves
t Miss Hit Band-
ne penalty rate width
N Y
Y
Y
Y
Y
Y
Y Y
Y Y

+ complexity costs (adapted from tables in H&P B and H&P 2.2)

Homework 1

Checkpoint due 12 September

Intuition: 32KB much faster than 34KB, then 32KB cache

Required for checkpoint:

- * For each data or unified (data and instruction) cache:
 - The size of that cache
 - The size of blocks (AKA lines) in that cache
- * For each data or unified TLB:
 - The size (number of entries) of that TLB
- * The single-core sequential throughput (read and write) of main memory
- * The single-core random throughput (read and write) of main memory

Avoiding associativity

Why not direct-mapped?

Different kinds of memory

Old prefetch strategies

Prefetch always

Fetch next on miss

Tagged prefetch — next on non-prefetch use

Common goal: sequential access patterns

Sequential access patterns

Examples?

Instructions

Dense matrix/array math

String processing

Some database operations

Stream buffers

Multi-way stream buffers

Performance Results

Prefetching on recent Intel (1)

From the Intel Optimization Manual on Sandy Bridge:

Two hardware prefetchers load data to the L1 DCache: • Data cache unit (DCU) prefetcher. This prefetcher ... is triggered by an ascending access to very recently loaded data.

• Instruction pointer (IP)-based stride prefetcher. This prefetcher keeps track of individual load instructions. If a load instruction is detected to have a regular stride, then a prefetch is sent to the next address which is the sum of the current address and the stride. ...

15

Prefetching on recent Intel (2)

From the Intel Optimization Manual on Sandy Bridge:

The following two hardware prefetchers fetched data from memory to the L2 cache and last level cache: **Spatial Prefetcher**: This prefetcher strives to complete every cache line fetched to the L2 cache with the pair line that completes it to a 128-byte aligned chunk. **Streamer**: This prefetcher monitors read requests from the L1 cache for ascending and descending sequences of addresses. Monitored read requests include ... load and store operations and ... the [L1] hardware prefetchers, and ... code fetch.

Sandy Bridge die

via anandtech (original is Intel press photo??)

Cook's Benchmark Categorization

Number of threads

Last level cache size

Prefetchers

17

19

Memory bandwidth

Interference between programs

Why a shared last-level cache?

Sandy Bridge's cache partitioning

Physical Page # Offset 0101 1111 1000 0000 0000 ... 110110 1111 11 Index of Set Page colors: 00, 01, 10, 11 Cache indices 0x000-0x3FF Cache indices 0x400-0x7FF Cache indices 0x800-0xBFF Cache indices 0xCFF-0xFFF

21

Energy: Race-to-Halt

Phases

Dynamic partitioning

Dynamic partitioning inputs: LLC misses over 100 ms, every 100 ms

Thresholds for detecting changes

27

Increase to max allocation — then decrease slowly

Reproducibility	
29	