
CS 6354: Memory Hierarchy II

31 August 2016

1

Memory Hierarchy
Registers
L1 cache
L2 cache
L3 cache

main
memory

< 1 ns
∼ 1 ns
∼ 5 ns

∼ 20 ns
∼ 100 ns

Image: approx 2004 AMD press image of Opteron die
2

Last time

Smith, “Cache memories”
Trace-based simulation of lots of cache parameters
Overlap virtual to physical lookup and cache lookup

Bernstein, “Cache timing attacks on AES”
Fighting for constant-time (with respect to secrets)
Suggestions for architects
Suggestions for crypto implementors

3

Last time: Cache optimizations
Improves

Technique Hit
time

Miss
penalty

Hit
rate

Band-
width

Increase block size N Y
Increase cache size N Y
Increase associavity N Y
Multilevel caches Y
Prioritize reads over writes Y
Virtual-index = Physical Y
Pipelined cache accesses Y
Non-blocking caches Y Y
Prefetching Y Y
Way-prediction Y

+ complexity costs
(adapted from tables in H&P B and H&P 2.2) 4



Homework 1

Checkpoint due 12 September
Intuition: 32KB much faster than 34KB, then 32KB
cache
Required for checkpoint:

* For each data or unified (data and instruction) cache:
- The size of that cache
- The size of blocks (AKA lines) in that cache

* For each data or unified TLB:
- The size (number of entries) of that TLB

* The single-core sequential throughput (read and write)
of main memory

* The single-core random throughput (read and write) of
main memory

5

Avoiding associativity

tag index offset

=

cache

tag

calcuation step 1data

buffer

execution step 2

6

Way prediction

tag index offset

select tag

cache way 1 cache way 2

tag

predict way

calcuation step 1

data

buffer

execution step 2

instruction ptr, …

7

Why not direct-mapped?
Virtual Page # Physical Page #

Index of Set? Index of Set?

Offset

Avoid virtual caches

Mitigation: way prediction

Different HW speed tradeoffs today?

8



Victim Caches

V Tag Data

1 0x1000x2000x300AA BBCC DDEE FF
V Address Data

1 0x1006 AA BB
1 0x10060x2006AA BBCC DD

Access
pattern:
0x1006
0x2006
0x3006
0x2006
0x1006

Direct-mapped Cache

Victim Cache

9

Different kinds of memory

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7FFF …

0x0000 0000 0040 0000

Used by OS
Virtual memory

Stack
Memory mappings
Writable data

Code + Constants

Conflict in low-order bits?

10

Old prefetch strategies

Prefetch always

Fetch next on miss

Tagged prefetch — next on non-prefetch use

Common goal: sequential access patterns

11

Sequential access patterns

Examples?

Instructions

Dense matrix/array math

String processing

Some database operations

12



Stream buffers

hit: shift up
miss: clear

13

Multi-way stream buffers

hit: shift up
miss: clear LRU

14

Performance Results

15

Prefetching on recent Intel (1)
From the Intel Optimization Manual on Sandy Bridge:

Two hardware prefetchers load data to the L1 DCache:
• Data cache unit (DCU) prefetcher. This prefetcher … is
triggered by an ascending access to very recently loaded data.
…
• Instruction pointer (IP)-based stride prefetcher. This
prefetcher keeps track of individual load instructions. If a load
instruction is detected to have a regular stride, then a
prefetch is sent to the next address which is the sum of the
current address and the stride. …

16



Prefetching on recent Intel (2)
From the Intel Optimization Manual on Sandy Bridge:

The following two hardware prefetchers fetched data from
memory to the L2 cache and last level cache:
Spatial Prefetcher: This prefetcher strives to complete
every cache line fetched to the L2 cache with the pair line
that completes it to a 128-byte aligned chunk.
Streamer: This prefetcher monitors read requests from the
L1 cache for ascending and descending sequences of
addresses. Monitored read requests include … load and store
operations and … the [L1] hardware prefetchers, and … code
fetch.

17

Sandy Bridge die

via anandtech (original is Intel press photo??)
18

Within each core

Image: Intel’s Optimization Reference Manual
19

Cook’s Benchmark Categorization

Number of threads

Last level cache size

Prefetchers

Memory bandwidth

20



Interference between programs

21

Why a shared last-level cache?

22

Sandy Bridge’s cache partitioning

12-way cache
way — ‘column’ of set-associative cache
each way is like a direct-mapped cache

Mask for which ways are used to store things on miss
LLC: Way 1

0.5 MB
Way 2
0.5 MB

Way 3
0.5 MB

Way 4
0.5 MB

Way 5
0.5 MB

Way 6
0.5 MB

Way 7
0.5 MB

Way 8
0.5 MB

Way 9
0.5 MB

Way 10
0.5 MB

Way 11
0.5 MB

Way 12
0.5 MB

foreground application
mask 1111 1000 0000

background application
mask 0000 0111 1111

23

Page coloring

0101 1111
110110
1111 11

100011 0000 0000 …

Physical Page #

Index of Set

Offset

cache indices 0x000–0x3FF
cache indices 0x400–0x7FF
cache indices 0x800–0xBFF
cache indices 0xCFF–0xFFF

cache (possibly direct-mapped)

Page colors:
00, 01, 10, 11

24



Experiment Design

25

Energy: Race-to-Halt

26

Phases

27

Dynamic partitioning

Dynamic partitioning inputs:
LLC misses over 100 ms, every 100 ms

Thresholds for detecting changes

Increase to max allocation — then decrease slowly

28



Reproducibility

29


