
CS 6354: Memory Hierarchy III

5 September 2016

1

Naïve (1)

for (int i = 0; i < I; ++i) {
for (int j = 0; j < J; ++j) {

for (int k = 0; k < K; ++k) {
C[i * K + k] +=

A[i * J + j] * B[j * K + k];
}

}
}

2

Naïve (1)

for (int i = 0; i < I; ++i) {
for (int j = 0; j < J; ++j) {

for (int k = 0; k < K; ++k) {
C[i * K + k] +=

A[i * J + j] * B[j * K + k];
}

}
}

2

Naïve (2)

for (int i = 0; i < I; ++i) {
for (int k = 0; k < K; ++k) {

for (int j = 0; j < J; ++j) {
C[i * K + k] +=

A[i * J + j] * B[j * K + k];
}

}
}

3

Naïve (2)

for (int i = 0; i < I; ++i) {
for (int k = 0; k < K; ++k) {

for (int j = 0; j < J; ++j) {
C[i * K + k] +=
A[i * J + j] * B[j * K + k];

}
}

}

3

Goto Fig. 4
1
2
:6

•
K

.
G

o
to

a
n
d

R
.
A

.
va

n
d
e

G
e
ijn

+:= �

gemm var1

+:=

�

gepp var1

+:=

�

gebp

+:=

gepp var2

+:= �

�

gepb

+:=

gemm var2

+:= �
�

gemp var1

+:= �

gepb

+:=

gemp var2

+:= �

gepdot

+:=

gemm var3

+:= �
�

gepm var2

+:= �

gepdot

+:=

gepm var1

+:= �

�

� gebp

+:=

F
ig

.
9

F
ig

.
1
1

F
ig

.
1
0

F
ig

.
8

�

�

�

�

�

F
ig.4.

L
ayered

approach
to

im
plem

en
tin

g
G

E
M

M
.

A
C

M
T

ran
saction

s
on

M
ath

em
aticalS

oftw
are,V

ol.34,N
o.3,A

rticle
12,P

u
blication

date:M
ay

2008.

4

The Inner Loop
Anatomy of High-Performance Matrix Multiplication • 12:7

Fig. 5. The algorithm that corresponds to the path through Figure 4 that always takes the top
branch expressed as a triple-nested loop.

fast

slow
�

�

�
�
�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�registers

Cache

RAM

expensive

cheap
�

�

�
�
�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�registers

L1 cache

TLB addr.

L2 cache
...

RAM

disk

ledoMdenfieRledoMelpmiS

Fig. 6. The hierarchical memories viewed as a pyramid.

and assume that

Assumption (a). The dimensions mc, kc are small enough so that A and nr
columns from each of B and C (Bj and Cj , respectively) together fit in the cache.

Assumption (b). If A, Cj , and Bj are in the cache then Cj := ABj + Cj can
be computed at the peak rate of the CPU.

Assumption (c). If A is in the cache it remains there until no longer needed.

Under these assumptions, the approach to GEBP in Figure 7 amortizes the
cost of moving data between the main memory and the cache as follows. The
total cost of updating C is mckc + (2mc + kc)n memops for 2mckcn flops. Then
the ratio between computation and data movement is

2mckcn
mckc + (2mc + kc)n

flops
memops

≈ 2mckcn
(2mc + kc)n

flops
memops

when kc � n. (1)

Thus
2mckc

(2mc + kc)
(2)

should be maximized under the constraint that mckc floating point numbers fill
most of the cache, and the constraints in Assumptions (a)–(c). In practice there
are other issues that influence the choice of kc, as we will see in Section 6.3.
However, the bottom line is that under the simplified assumptions A should

ACM Transactions on Mathematical Software, Vol. 34, No. 3, Article 12, Publication date: May 2008.

12:14 • K. Goto and R. A. van de Geijn

overhead. The algorithm in Figure 9 can hide the cost of bringing elements of
B from memory, but exposes the cost of unpacking C as sheer overhead. The
unpacking of C is a more complex operation and can therefore be expected to
be more expensive than the packing of B, making the algorithm in Figure 8
preferable over the one in Figure 9. A similar argument can be used to rank
the algorithm in Figure 10 over the one in Figure 11.

This leaves us with having to choose between the algorithms in Figures 8
and 10, which on the surface appear to be symmetric in the sense that the roles
of A and B are reversed. Note that the algorithms access C a few columns and
rows at a time, respectively. If the matrices are stored in column-major order,
then it is preferable to access a block of those matrices by columns. Thus the
algorithm in Figure 8 can be expected to be superior to all the other presented
options.

Due to the level of effort that is required to implement kernels like GEBP, GEPB,
and GEPDOT, we focus on the algorithm in Figure 8 throughout the remainder of
this article.

We stress that the conclusions in this subsection are continguent on the
observation that on essentially all current processors there is an advantage to
blocking for the L2 cache. It is entirely possible that the insights will change if,
for example, blocking for the L1 cache is preferred.

6. MORE DETAILS YET

We now give some final insights into how registers are used by kernels like
GEBP OPT1, after which we comment on how parameters are chosen in practice.

Since it has been argued that the algorithm in Figure 8 will likely attain the
best performance, we focus on that algorithm:

+:=

nrkc

mc

6.1 Register Blocking

Consider Caux := ÃBj in Figure 8, where Ã and Bj are in the L2 and L1 caches,
respectively. This operation is implemented by computing mr × nr submatrices
of Caux in the registers.

:=

nrkc

mr

Notice that this means that during the computation of Cj it is not necessary
that elements of that submatrix remain in the L1 or even the L2 cache: 2mrnrkc
flops are performed for the mrnr memops that are needed to store the results
from the registers to whatever memory layer. We will see that kc is chosen to
be relatively large.

This figure allows us to discuss the packing of A into Ã in more detail. In our
implementation, Ã is stored so that each mr × kc submatrix is stored contigu-
ously in memory. Each such submatrix is itself stored in column-major order.
This allows Caux := ÃBj to be computed while accessing the elements of Ã by

ACM Transactions on Mathematical Software, Vol. 34, No. 3, Article 12, Publication date: May 2008.

5

GFLOP/s
Anatomy of High-Performance Matrix Multiplication • 12:19

 m = n = k

G
F

lo
p
s

0 500 1000 1500 2000

0
1

2
3

4
5

6
7

0
2
0

4
0

6
0

8
0

1
0
0

P
e
rc

e
n
ta

g
e

dgemm
Kernel
Pack A
Pack B

k (m = n = 2000)

G
F

lo
p
s

0 500 1000 1500 2000

0
1

2
3

4
5

6
7

0
2
0

4
0

6
0

8
0

1
0
0

P
e
rc

e
n
ta

g
e

dgemm
Kernel
Pack A
Pack B

Fig. 14. Pentium4 Prescott (3.6 GHz).

n = 2000 and k is varied. We note that GEPP with k relatively small is perhaps
the most commonly encountered special case of GEMM.

—The top curve, labeled Kernel, corresponds to the performance of the kernel
routine (GEBP opt1).

—The next lower curve, labeled dgemm, corresponds to the performance of
the DGEMM routine implemented as a sequence of GEPP operations. The GEPP

operation was implemented via the algorithms in Figure 8.
—The bottom two curves correspond the percent of time incurred by routines

that pack A and B into Ã and B̃, respectively. (For these curves only the
labeling along the right axis is relevant.)

The overhead caused by the packing operations accounts almost exactly for the
degradation in performance from the kernel curve to the DGEMM curve.

The graphs in Figure 15 investigate the performance of the implementation
when m and n are varied. In the top graph m is varied while n = k = 2000.

ACM Transactions on Mathematical Software, Vol. 34, No. 3, Article 12, Publication date: May 2008.

6

Theoretical maximum performance

This CPU: 2 double adds or multiplies per cycle

3.6 GHz: 7.2B adds or multiplies per second

= 7.2 Gflop/s (Giga Floating Point Operation Per
Second)

7

Theme: Overlap

Modern CPUs do other things during memory
operations

ideal: no added latency

8

Cache/Register Blocking

minimize data movements

… by reordering computation

best orders — all computations within ‘block’

9

Load into Cache?
12:8 • K. Goto and R. A. van de Geijn

Algorithm: C := gebp(A,B,C)

+:=

nrkc
mc

Load A into cache (mckc memops)
for j = 0, . . . ,N − 1

Load Bj into cache (kcnr memops)
Load Cj into cache (mcnr memops)

+:=
(Cj := ABj + Cj)

Store Cj into memory (mcnr memops)
endfor

Fig. 7. Basic implementation of GEBP.

occupy as much of the cache as possible and should be roughly square,2 while
leaving room in the cache for at least Bj and Cj . If mc = kc ≈ n/100 then
even if memops are 10 times slower than flops, the memops add only about 10%
overhead to the computation.

The related operations GEPB and GEPDOT can be analyzed similarly by keeping
in mind the following pictures:

GEPB

+:=

GEPDOT

+:=

.

4.2 Refinements

In discussing practical considerations we will again focus on the high-
performance implementation of GEBP. Throughout the remainder of the paper,
we will assume that matrices are stored in column-major order.

4.2.1 Choosing the Cache Layer. A more accurate depiction of the memory
hierarchy can be found in Figure 6(right). This picture recognizes that there
are typically multiple levels of cache memory.

The first question is in which layer of cache the mc × kc matrix A should
reside. Equation (2) tells us that (under Assumptions (a)–(c)) the larger mc ×nc,
the better the cost of moving data between RAM and the cache is amortized
over computation. This suggests loading matrix A in the cache layer that is
farthest from the registers (can hold the most data) subject to the constraint
that Assumptions (a)–(c) are (roughly) met.

The L1 cache inherently has the property that if it were used for storing A,
Bj and Cj , then Assumptions (a)–(c) are met. However, the L1 cache tends to
be very small. Can A be stored in the L2 cache instead, allowing mc and kc to be

2Note that optimizing the similar problem mckc/(2mc +2kc) under the constraint that mckc ≤ K is
the problem of maximizing the area of a rectangle while minimizing the perimeter, the solution of
which is mc = kc. We do not give an exact solution to the stated problem since there are practical
issues that also influence mc and kc.

ACM Transactions on Mathematical Software, Vol. 34, No. 3, Article 12, Publication date: May 2008.

10

Why packing?

250 x ??? matrix at memory address 300, working on first part:
300 301 302 303 304 305 306 307 308 309 310 311 … 549
550 551 552 553 554 555 556 557 558 559 560 561 … 799
800 801 802 803 804 805 806 807 808 809 810 811 … 1049
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 … 1299
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 … 1549

unused parts of cache blocks
irrelevant 310 in same block as 309

conflict misses if close-to-power-of-two
nearby matrix entries map to same set

extra TLB misses
less of relevant matrix in each page

11

Why packing?

250 x ??? matrix at memory address 300, working on first part:
300 301 302 303 304 305 306 307 308 309 310 311 … 549
550 551 552 553 554 555 556 557 558 559 560 561 … 799
800 801 802 803 804 805 806 807 808 809 810 811 … 1049
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 … 1299
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 … 1549

unused parts of cache blocks
irrelevant 310 in same block as 309

conflict misses if close-to-power-of-two
nearby matrix entries map to same set

extra TLB misses
less of relevant matrix in each page

11

Why packing?

250 x ??? matrix at memory address 300, working on first part:
300 301 302 303 304 305 306 307 308 309 310 311 … 549
550 551 552 553 554 555 556 557 558 559 560 561 … 799
800 801 802 803 804 805 806 807 808 809 810 811 … 1049
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 … 1299
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 … 1549

unused parts of cache blocks
irrelevant 310 in same block as 309

conflict misses if close-to-power-of-two
nearby matrix entries map to same set

extra TLB misses
less of relevant matrix in each page

11

Why packing?

250 x ??? matrix at memory address 300, working on first part:
300 301 302 303 304 305 306 307 308 309 310 311 … 549
550 551 552 553 554 555 556 557 558 559 560 561 … 799
800 801 802 803 804 805 806 807 808 809 810 811 … 1049
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 … 1299
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 … 1549

unused parts of cache blocks
irrelevant 310 in same block as 309

conflict misses if close-to-power-of-two
nearby matrix entries map to same set

extra TLB misses
less of relevant matrix in each page

11

The Balanced System

nr ≥
Rcomp
2Rload

C = AB

overlap loads (at rate Rload) from L2 with
computation

enough of C, B (nr) in L1/registers to keep FPU
busy

12

TLB capacities

virtual physical
0x00444 0x007

0x00446 0x01c

0x00448 0x01f

0x0044a 0x024

TLB (cache of page table)

virtual page # page offset

physical page # page offset

virtual (program) address

physical (machine) address

reach: page size × # entries = 16K with 4K pages
worst case: each entry only useful for 1 byte of data:
e.g. 0x00444ccc 0x00446bbb 0x00448aaa

0x0044a999 0x0044c777 etc.

13

TLB capacities

virtual physical
0x00444 0x007

0x00446 0x01c

0x00448 0x01f

0x0044a 0x024

TLB (cache of page table)

virtual page # page offset

physical page # page offset

virtual (program) address

physical (machine) address

reach: page size × # entries = 16K with 4K pages

worst case: each entry only useful for 1 byte of data:
e.g. 0x00444ccc 0x00446bbb 0x00448aaa

0x0044a999 0x0044c777 etc.

13

TLB capacities

virtual physical
0x00444 0x007

0x00446 0x01c

0x00448 0x01f

0x0044a 0x024

TLB (cache of page table)

virtual page # page offset

physical page # page offset

virtual (program) address

physical (machine) address

reach: page size × # entries = 16K with 4K pages
worst case: each entry only useful for 1 byte of data:
e.g. 0x00444ccc 0x00446bbb 0x00448aaa

0x0044a999 0x0044c777 etc. 13

Hierarchical page tables

CR3

3239404748555663 08162431 15 723

...
...

4K
 m

em
or

y
pa

ge

Linear address:

64 bit PD
entry

...
...

page directory

...
...

PDP
entry

page-directory-
pointer table

64 bit PT
entry

...
...

page table

...
...

PML4
entry

PML4 table
99

40*

9 9 12

sign extended

*) 40 bits aligned to a 4-KByte boundary

Diagram: Wikimedia / RokerHRO
14

Large pages (1)

Diagram: Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A
15

Large pages (2)

Diagram: Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A
16

Data TLB reach on my laptop
4KB pages: 64 pages = 256 KB
2M pages: 32 pages = 64 MB

1GB pages: 4 pages = 4 GB

256 KB — smaller than L3 cache

17

Intuition: why no locality

Amazon recommendation network from Lehmann and Kottler, “Visualizing Large and Clustered Networks”
18

Proof of locality?

19

Preview: Out-of-order

What happens on a cache miss?

modern fast CPUs: keep executing instructions

…unless value actually needed

20

Preview: Out-of-order

What happens on a cache miss?

modern fast CPUs: keep executing instructions

…unless value actually needed

20

Preview: Reorder buffer

holds pending instructions

used to make computation appear in-order

(more later in the course)

key feature here: need to have enough room for
every instruction run out-of-order

21

Non-Uniform Memory Access

Some memory closer to one core than another

Exists within a socket (single chip)

22

Memory Request Limits

23

Page table overhead

24

Pointer chasing

void **pointer = /* initialize array */;
for (int i = 0; i < MAX_ITER; ++i) {

pointer = *pointer;
}

25

Preview: SMT

What happens on cache miss?

Run a different thread!

Needs: extra set of registers

Same machinary as out-of-order

(more later in the course)

26

Beamer’s theory about SMT

“One thread could generate most of the cache misses sustaining
a high effective MLP while the other thread (unencumbered by
cache misses) could execute instructions quickly to increase IPM.”

“In practice, the variation between threads is modest…”

27

Conditions

28

Where to do graph processing?

Extreme: Cray XMT
no data cache
100s of outstanding memory acccesses (“memory-level
parallelism”)

29

Homework 1

Example: measure sizes of each data/unified cache
Benchmark: speed of accessing array of varying size
in random order

103 104 105 106 107

101

102

array size (B)

cy
cle

s/
re

ad

30

Note on Paper Reviews (1)

Make it clear where you answer each part
You can copy-and-paste the questions

Only need one significant insight
Better to explain one well (including evidence) than
three poorly

Your insight should be a result
What experiments showed, not what experiments were
done

31

Note on Paper Reviews (2)

Evidence: not just that there were experiments
What kind of experiments?
How big is the effect?

Weakness/improvement: don’t be afraid
Often the discussion identifies these for you

32

Next time

“Performance from architecture: comparing a RISC
and CISC with similar hardware organization”

CISC (VAX) v RISC (MIPS)
both pipelined
microinstructions to implement complex instructions

”The RISC V Instruction Set Manual: Volume I:
User-Level ISA”, Chapter 1 (including commentary)
only

motivation (chapter 1 only) for a recent ISA design

33

