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Naive (1)

for (int i = 0; i < I; ++i) {
for (int j = 0; j < J; ++j) {
for (int k = 0; k < K; ++k) {
C[i * K + k] +=
A[i * 3 + 31 % B[J * K + kJ;
¥
¥
}

Naive (2)

for (int k

for (int i = 03 1
for (int j

A[i x J + j] » B[jJ * K + k];

Goto Fig. 4
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The Inner Loop

forp=1:K
fori=1: M
for j=1:N GEBP GEPP_VAR1 GEMM_VARL
Ciy+ = AipBp; o [T+~ JIID L H—
endfor 1
endfor
endfor

Fig. 5. The algorithm that corresponds to the path through Figure 4 that always takes the top
branch expressed as a triple-nested loop.
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Fig. 14. Pentium4 Prescott (3.6 GHz).

Theoretical maximum performance

This CPU: 2 double adds or multiplies per cycle
3.6 GHz: 7.2B adds or multiplies per second

= 7.2 Gflop/s (Giga Floating Point Operation Per
Second)

Theme: Overlap

Modern CPUs do other things during memory
operations

ideal: no added latency




Cache/Register Blocking

minimize data movements

.. by reordering computation

best orders — all computations within ‘block’

Load into Cache?

Algorithm: C := GEBP(A, B,C)

%

Load A into cache

for j =0,..., N —1
Load Bj into cache
Load C; into cache

1+-[0

Store C; into memory
endfor

(mcke memops)
(keny memops)
(men, memops)

(Cj == AB; + Cj)

(men, memops)

Fig. 7. Basic implementation of GEBP.
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Why packing? The Balanced System
250 x 77?7 matrix at memory address 300, working on first part:
510l S11) (o2 N > Rcomp
TS0 S0 S0d SO GUbl ot By ==y "= 2R)0ad
105010511052 1053 10DA 100D 1000 Tt 358 1000| L060| L06L] . |1299
1300[1301[1302[1303[1304[1305[1306]/1307[1308[1309]1310[1311] .. [1549
C =AB
unused parts of cache blocks _
_ P _ overlap loads (at rate Rjoaq) from L2 with
irrelevant 310 in same block as 309 -
computation
conflict misses if close-to-power-of-two _ _
_ _ enough of C, B (n,) in L1/registers to keep FPU
nearby matrix entries map to same set
busy
extra TLB misses
less of relevant matrix in each page
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TLB capacities

TLB he of tabl
virtual (program) address (cache of page table)

virtual page # | page offset virtual physical

0x00444 | Ox007

Y 0x00446 |0Ox01lc

physical page # | page offset

physical (machine) address

0x00448 | Ox01f

0x0044a | Ox024

reach: page size x # entries = 16K with 4K pages

worst case: each entry only useful for 1 byte of data:
0x00444ccc 0x00446bbb 0x00448aaa
Ox0044a999 0Ox0044cT777 etc.
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Hierarchical page tables

Linear address:

63 56|55 48|47 40(39 3231
HHHHHHH“HHHHHH“

sign extended
T R

24

23 16(15 8

7 0

9 9

PML4 table page-director:

9

PML o

page directory

9 12

page table

entry
it

40*

CR3

*) 40 bits aligned to a 4-KByte boundary

y 64bitPD g1
entry 64bitPT gl
entry

Diagram: Wikimedia / RokerHRO

4K memory page

Linear Address Linear Address
47 39 38 3029 2120 ] 47 39 38 30 29 )
PML4 | Directory Ptr Directory Offset PML4 | Directory Pir Offset
e —— ‘ 9 21 | 30
9 E]
2-MByte Page
Physical Addr
Page-Directory- | PDE with PS=1 Page-Directory- 1-GByte Page
Pointer Table 31 Pointer Table
T Page-Directory = Physical Addr
PDPTE / PDPTE with PS=1
40 22
k] 9
40 ji 40
»>| PMLAE _ —»=| PML4E
/{ 40 40
CR3 CR3
Diagram: Intel 64 and 1A-32 Architectures Software Developer's Manual, Volume 3A 15 Diagram: Intel 64 and 1A-32 Architectures Software Developer's Manual, Volume 3A ]_6




Data TLB reach on my laptop

4KB pages: 64 pages = 256 KB
2M pages: 32 pages = 64 MB
1GB pages: 4 pages= 4 GB

256 KB — smaller than L3 cache

Intuition: why no locality

Amazon recommendation network from Lehmann and Kottler, “Visualizing Large and Clustered Networks”
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Proof of locality? Preview: Qut-of-order
55|l B «ron What happens on a cache miss?
T road
20 0 web modern fast CPUs: keep executing instructions
O twitter
£ 15 [ uniform || ..unless value actually needed
CH =
10
ol =[5 . m
0 20 40 60 80 100 120
Misses per Kilo Instruction (MPKI)
Fig. 7. Single-thread MPKI (in terms of LL.C misses) of full workload.
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Preview: Reorder buffer

holds pending instructions
used to make computation appear in-order
(more later in the course)

key feature here: need to have enough room for
every instruction run out-of-order

Non-Uniform Memory Access
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Fig. 12. Single-socket (8 cores) slowdown relative to local memory of full 079 1Tinterleave B0 1T Remote

workload executing out of remote memory or interleaved memory.

0 2TInterleave O @ 2T Remote

Some memory closer to one core than another

Exists within a socket (single chip)

Effective MLP

21 22
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Instructions per Miss (IPM) ) . . .
Fig. 3. Impact of 2MB and 1 GB page sizes on memory bandwidth achieved
by single-thread parallel pointer chase for array sizes of small (1 GB) and
large (16 GB).
23 24




Pointer chasing

void **pointer = /* initialize array */;
for (int i = 0; 1 < MAX_ITER; ++1i) {
pointer = *pointer;

}

Preview: SMT

What happens on cache miss?
Run a different thread!

Needs: extra set of registers
Same machinary as out-of-order

(more later in the course)
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Beamer’s theory about SMT Conditions
o T PEP— Any LLC miss will cause even a large out-of-order proces-
8% 0 0 2Threads sor to stall for a significant number of cycles. Ideally, while
o \ - model ] waiting for the first cache miss to resolve, at least some useful
% e.&‘@ ] work could be done, including initiating loads early that will
g Jz&f\ cause future cache misses. Unfortunately, a load must satisfy
g 3&,&;@00 the following four requirements before it can be issued:
IO
U e 0 %% ‘.'g e Tf‘"s_ 1)  Processor fetches load instruction - Control flow
0 RN S S S S S reaches the load instruction (possibly speculatively).
0 50 100 150 200 250 300 350 L . .
Instructions per Miss (IPM) 2)  Space in instruction window - The Reorder Buffer
Fig. 1§. Achieveq memory bandwidth of full workload relative to instructions (ROB) ].S nOt fu]'l alld has room for the ].Oad
per miss (M) with one or (wo hreads on one coe. 3)  Register operands are available - The load address
“One thread could generate most of the cache misses sustainin can be generated.
. . & . & 4)  Memory bandwidth is available - At the core level
a high effective MLP while the other thread (unencumbered by there is a miss-status holding register (MSHR) avail-
cache misses) could execute instructions quickly to increase IPM." able and there is not excessive contention within the
on-chip interconnect or at the memory controller.
“In practice, the variation between threads is modest...”
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Where to do graph processing?

Extreme: Cray XMT

no data cache
100s of outstanding memory acccesses (“memory-level
parallelism”)

Homework 1

Example: measure sizes of each data/unified cache

Benchmark: speed of accessing array of varying size
in random order

o 107 '
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L
~
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S 10', .
O
10° 10 10° 10° 107
array size (B)
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Note on Paper Reviews (1) Note on Paper Reviews (2)
Make it clear where you answer each part Evidence: not just that there were experiments
You can copy-and-paste the questions What kind of experiments?
_ How big is the effect?
Only need one significant insight
Better to explain one well (including evidence) than Weakness /improvement: don't be afraid
three poorly Often the discussion identifies these for you
Your insight should be a result
What experiments showed, not what experiments were
done
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Next time

“Performance from architecture: comparing a RISC
and CISC with similar hardware organization”

CISC (VAX) v RISC (MIPS)
both pipelined
microinstructions to implement complex instructions

"The RISC V Instruction Set Manual: Volume I:
User-Level ISA”, Chapter 1 (including commentary)
only

motivation (chapter 1 only) for a recent ISA design
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