
CS 6354: Pipelining / ISAs

7 September 2016

1

Review: Memory Hierarchy

2

Review: Page Tables

CR3

3239404748555663 08162431 15 723

...
...

4K
 m

em
or

y
pa

ge

Linear address:

64 bit PD
entry

...
...

page directory

...
...

PDP
entry

page-directory-
pointer table

64 bit PT
entry

...
...

page table

...
...

PML4
entry

PML4 table
99

40*

9 9 12

sign extended

*) 40 bits aligned to a 4-KByte boundary

3

Review: Memory Hierarchy
Optimizations

adjust # caches, sizes, associativity, block size, …

adjust when virtual to physical translation happens

add victim caches, prefetching, etc.

cache blocking — reorder code for more reuse

overlap memory accesses and

4

Human pipeline: laundry

Washer

Dryer

Folding
Table

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets
5

The MIPS pipeline

Copyright © 2011, Elsevier Inc. All rights Reserved. 17

Figure C.28 The stall from branch hazards can be reduced by moving the zero test and branch-target calculation into the ID
phase of the pipeline. Notice that we have made two important changes, each of which removes 1 cycle from the 3-cycle stall for
branches. The first change is to move both the branch-target address calculation and the branch condition decision to the ID cycle.
The second change is to write the PC of the instruction in the IF phase, using either the branch-target address computed during ID or
the incremented PC computed during IF. In comparison, Figure C.22 obtained the branch-target address from the EX/MEM register
and wrote the result during the MEM clock cycle. As mentioned in Figure C.22, the PC can be thought of as a pipeline register (e.g.,
as part of ID/IF), which is written with the address of the next instruction at the end of each IF cycle.

Figure: H&P Appendix C 6

MIPS instruction execution (1)

add $1, $2, $3 ; reg[1] <− reg[2] + reg[3]

Instruction Fetch: read from instruction cache
IF/ID stores: instr., PC

Instruction Decode: read registers 2 and 3
ID/EX stores: reg[2], reg[3], instr., PC

Execute: compute reg[2] + reg[3]
EX/MEM stores: reg[2] + reg[3], instr., PC

Memory: do nothing
MEM/WB stores: reg[2] + reg[3], instr., PC

Write Back: write computed value into reg[1]
7

MIPS instruction execution (2)

sw r1, 100(r3) ; memory[100 + reg[3]] = reg[1]

Instruction Fetch: read from instruction cache
IF/ID stores: instr., PC

Instruction Decode: read registers 1 and 3
ID/EX stores: reg[1], reg[3], instr., PC

Execute: compute 100 + reg[3]
EX/MEM stores: 100 + reg[3], reg[1], instr., PC

Memory: store reg[1] into data @ 100 + reg[3]
MEM/WB stores: instr., PC

Write Back: do nothing
8

The MIPS pipeline

Copyright © 2011, Elsevier Inc. All rights Reserved. 17

Figure C.28 The stall from branch hazards can be reduced by moving the zero test and branch-target calculation into the ID
phase of the pipeline. Notice that we have made two important changes, each of which removes 1 cycle from the 3-cycle stall for
branches. The first change is to move both the branch-target address calculation and the branch condition decision to the ID cycle.
The second change is to write the PC of the instruction in the IF phase, using either the branch-target address computed during ID or
the incremented PC computed during IF. In comparison, Figure C.22 obtained the branch-target address from the EX/MEM register
and wrote the result during the MEM clock cycle. As mentioned in Figure C.22, the PC can be thought of as a pipeline register (e.g.,
as part of ID/IF), which is written with the address of the next instruction at the end of each IF cycle.

Figure: H&P Appendix C 9

MIPS instruction execution (1)

add $1, $2, $3 ; reg[1] <− reg[2] + reg[3]

Instruction Fetch: read from instruction cache
IF/ID stores: instr., PC

Instruction Decode: read registers 2 and 3
ID/EX stores: reg[2], reg[3], instr., PC

Execute: compute reg[2] + reg[3]
EX/MEM stores: reg[2] + reg[3], instr., PC

Memory: do nothing
MEM/WB stores: reg[2] + reg[3], instr., PC

Write Back: write computed value into reg[1]
10

MIPS instruction execution (2)

sw r1, 100(r3) ; memory[100 + reg[3]] = reg[1]

Instruction Fetch: read from instruction cache
IF/ID stores: instr., PC

Instruction Decode: read registers 1 and 3
ID/EX stores: reg[1], reg[3], instr., PC

Execute: compute 100 + reg[3]
EX/MEM stores: 100 + reg[3], reg[1], instr., PC

Memory: store reg[1] into data @ 100 + reg[3]
MEM/WB stores: instr., PC

Write Back: do nothing
11

MIPS executing

Copyright © 2011, Elsevier Inc. All rights Reserved. 3

Figure C.3 A pipeline showing the pipeline registers between successive pipeline stages. Notice that the registers prevent
interference between two different instructions in adjacent stages in the pipeline. The registers also play the critical role of carrying
data for a given instruction from one stage to the other. The edge-triggered property of registers—that is, that the values change
instantaneously on a clock edge—is critical. Otherwise, the data from one instruction could interfere with the execution of another!

12

Pipeline Hazards

hazards stop pipeline from executing at full rate

structural hazards — not enough hardware

data hazards — value not computed soon enough

control hazards — instruction to execute not known
soon enough

13

Functional Hazards

Copyright © 2011, Elsevier Inc. All rights Reserved. 4

Figure C.4 A processor with only one memory port will generate a conflict whenever a memory reference occurs. In this
example the load instruction uses the memory for a data access at the same time instruction 3 wants to fetch an instruction from
memory.

Figure: H&P Appendix C 14

Read-after-Write

add r1, r2, r3 ; r1 <− r2 + r3
sub r4, r1, r5 ; r5 <− r1 − r5

add r1, r2, r3 sub r4, r1, r5
1 IF
2 ID: read r2, r3 IF
3 EX : temp1 ← r2 + r3 ID: read r1, r5
4 MEM EX : temp2 ← r1 - r5
5 WB: r1 ← temp MEM
6 WB: r4 ← temp2

15

Read-after-Write — Stall

add r1, r2, r3 ; r1 <− r2 + r3
sub r4, r1, r5 ; r5 <− r1 − r5

add r1, r2, r3 sub r4, r1, r5
1 IF
2 ID: read r2, r3 IF
3 EX : temp1 ← r2 + r3 stall
4 MEM stall
5 WB: r1 ← temp1 stall
6 ID: read r1, r5
7 EX : temp2 ← r1 + r5
8 MEM
9 WB: r4 ← temp2

16

Implementing Stalls

disable writing pipeline registers
need logic to detect conflicts

function of pipeline registers (instruction values)

17

Read-After-Write

Copyright © 2011, Elsevier Inc. All rights Reserved. 5

Figure C.6 The use of the result of the DADD instruction in the next three instructions causes a hazard, since the register is
not written until after those instructions read it.

Figure: H&P Appendix C 18

Read-after-Write — Forward

add r1, r2, r3 ; r1 <− r2 + r3
sub r4, r1, r5 ; r5 <− r1 − r5

add r1, r2, r3 sub r4, r1, r5
1 IF
2 ID: read r2, r3 IF
3 EX : temp1 ← r2 + r3 ID: read r1, r5
4 MEM EX : temp2 ← temp1 - r5
5 WB: r1 ← temp MEM
6 WB: r4 ← temp2

19

Forwarding

Copyright © 2011, Elsevier Inc. All rights Reserved. 6

Figure C.7 A set of instructions that depends on the DADD result uses forwarding paths to avoid the data hazard. The inputs
for the DSUB and AND instructions forward from the pipeline registers to the first ALU input. The OR receives its result by
forwarding through the register file, which is easily accomplished by reading the registers in the second half of the cycle and
writing in the first half, as the dashed lines on the registers indicate. Notice that the forwarded result can go to either ALU input; in
fact, both ALU inputs could use forwarded inputs from either the same pipeline register or from different pipeline registers. This
would occur, for example, if the AND instruction was AND R6,R1,R4.

Figure: H&P Appendix C 20

Implementing Forwarding

multiplexers for operand values
need logic to detect which one to use

function of pipeline registers (instruction values)

21

Implementing Forwarding

Copyright © 2011, Elsevier Inc. All rights Reserved. 16

Figure C.27 Forwarding of results to the ALU requires the addition of three extra inputs on each ALU multiplexer and the
addition of three paths to the new inputs. The paths correspond to a bypass of: (1) the ALU output at the end of the EX, (2) the
ALU output at the end of the MEM stage, and (3) the memory output at the end of the MEM stage.

Figure: H&P Appendix C 22

Limits of Forwarding

Copyright © 2011, Elsevier Inc. All rights Reserved. 8

Figure C.9 The load instruction can bypass its results to the AND and OR instructions, but not to the DSUB, since that
would mean forwarding the result in “negative time.”

Figure: H&P Appendix C 23

Scheduling for Pipelines
lw r1, 0(r20) ; r1 <− MEM[0+r20]
lw r2, 4(r20) ; r2 <− MEM[4+r20]
add r3, r1, r2 ; r3 <− r1 + r2
lw r4, 8(r20) ; r4 <− MEM[8+r20]
add r4, r4, r3 ; r4 <− r4 + r3
sw r4, 8(r20) ; MEM[8+r20] <− r4
lw r5, 12(r20) ; r5 <− MEM[12+r20]
mul r5, r5, r4 ; r5 <− r5 * r4
sw r5, 12(r20) ; r5 <− MEM[12+r20]

converts into
lw r1, 0(r20) ; r1 <− MEM[0+r20]
lw r2, 4(r20) ; r2 <− MEM[4+r20]
lw r4, 8(r20) ; r4 <− MEM[8+r20]
lw r5, 12(r20) ; r5 <− MEM[12+r20]
add r3, r1, r2 ; r3 <− r1 + r2
add r4, r4, r3 ; r4 <− r4 + r3
mul r5, r5, r4 ; r5 <− r5 * r4
sw r4, 8(r20) ; MEM[8+r20] <− r4
sw r5, 12(r20) ; r5 <− MEM[12+r20]

24

Next time: Scheduling

Weiss and Smith, “A study of scalar compilation
techniques for pipelined supercomputers”

theme: seperate dependencies from use
focus on loops

25

Control Hazard

need to decode instruction to know next instruction

Copyright © 2011, Elsevier Inc. All rights Reserved. 3

Figure C.3 A pipeline showing the pipeline registers between successive pipeline stages. Notice that the registers prevent
interference between two different instructions in adjacent stages in the pipeline. The registers also play the critical role of carrying
data for a given instruction from one stage to the other. The edge-triggered property of registers—that is, that the values change
instantaneously on a clock edge—is critical. Otherwise, the data from one instruction could interfere with the execution of another!

next instruction known

next instruction needed

26

MIPS Delay Slots

avoid control hazard by delaying branch
add $3, $4, $5 ; (1)
beq $1, $2, label ; (2)
add $5, $6, $7 ; (3) DELAY SLOT
add $6, $7, $8
add $8, $9, $10

label:
add $7, $8, $9 ; (4)

27

Branch Prediction

branch prediction — guess whether branch is taken

start guess immediately

clear pipeline registers if wrong

28

Speculation

when is it okay to guess

if we can undo guess if wrong
MIPS pipeline:

IF — doesn’t change state
ID — doesn’t change state
EX — doesn’t change state
MEM — changes memory!
WB — changes registers!

undo: clear pipeline registers before MEM, set new
PC

29

Static branch prediction

forwards not taken (fetch normally)

backwards taken (fetch target)

30

Dynamic branch prediction
PC

N
N
N
N

TTN
T
N
T

low-order bits

prediction

actual
result

lookup branch address in table

1-bit: Taken/Not taken

taken before ⇒ taken again

31

Dynamic branch prediction

refinement: 2 bits

Copyright © 2011, Elsevier Inc. All rights Reserved. 11

Figure C.18 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that strongly favors taken or not
taken—as many branches do—will be mispredicted less often than with a 1-bit predictor. The 2 bits are used to encode the four
states in the system. The 2-bit scheme is actually a specialization of a more general scheme that has an n-bit saturating counter for
each entry in the prediction buffer. With an n-bit counter, the counter can take on values between 0 and 2n – 1: When the counter is
greater than or equal to one-half of its maximum value (2n – 1), the branch is predicted as taken; otherwise, it is predicted as
untaken. Studies of n-bit predictors have shown that the 2-bit predictors do almost as well, thus most systems rely on 2-bit branch
predictors rather than the more general n-bit predictors.

Figure: H&P Appendix C 32

Deeper Pipelines (1)

Copyright © 2011, Elsevier Inc. All rights Reserved. 19

Figure C.35 A pipeline that supports multiple outstanding FP operations. The FP multiplier and adder are fully pipelined and
have a depth of seven and four stages, respectively. The FP divider is not pipelined, but requires 24 clock cycles to complete. The
latency in instructions between the issue of an FP operation and the use of the result of that operation without incurring a RAW stall
is determined by the number of cycles spent in the execution stages. For example, the fourth instruction after an FP add can use the
result of the FP add. For integer ALU operations, the depth of the execution pipeline is always one and the next instruction can use
the results.

Figure: H&P Appendix C 33

Deeper Pipelines (2)

Copyright © 2011, Elsevier Inc. All rights Reserved. 24

Figure C.44 The basic branch delay is 3 cycles, since the condition evaluation is performed during EX.
Figure: H&P Appendix C 34

Microcoded pipelined CPU

35

Less registers? (1)

36

Less registers? + Seperate I-Cache?

37

RISC factors

38

Factors favoring MIPS

operand specifier decoding — 1 cycle per on VAX

seperate floating point registers — seperate FPU

condition code RAW hazards

needless work by, e.g., CISC CALL/RET

filled delay slots

larger page size

larger range for brganches

39

Addressing modes on VAX

40

Addressing modes on VAX

ADDL3 @(R5)+[R6], @(R1)+[R2], @(R3)+[R4]

one instruction
six memory accesses, four register reads
three register writes
MEM[MEM[R5]+R6] ← MEM[MEM[R1]+R2]

+ MEM[MEM[R3]+R4]
R1 ← R1 + 4
R3 ← R3 + 4
R5 ← R5 + 4

41

ISA design

lots of non-technical factors

42

Notable RISC V decisions

modular ISA design

optional variable length encoding (code size)

43

Justifications (1)

31 general-purpose registers + 0 register + pc
usually 32-bit instructions

“it is impossible to encode a complete ISA with 16
registers in 16-bit instructions using a 3-address
format. Although a 2-address format would be
possible, it would increase instruction count and lower
efficiency. … A larger number of integer registers also
helps performance on high-performance code,…”
“The optional compressed 16-bit instruction format
mostly only accesses 8 registers”

44

Justifications (2)

“Decoding register specifiers is usualy on the critical path … so
the instruction format was chosen to keep all registers specifiers
at the same position…”

45

Justifications (3)

no delay slots
no condition codes

“condition codes and branch delay slots, which
complicate higher performance implementations”

46

