
CS 6354: Branch Prediction (con’t)
/ Multiple Issue

14 September 2016

1

Last time: forwarding/stalls

add $a0, $a2, $a3
; zero or more instructions
sub $t0, $a0, $a1

sub depends on calcuation from add
No forwarding: get $a0 via register file

‘write back’ of add completes before ‘decode’ of sub

Forwarding: transfer values via pipeline registers
instead

‘execute’ of add completes before ‘execute’ of sub

Stall: Delay instruction
don’t start ‘execute’ of sub before ‘execute’ of add

2

Last time: scheduling to avoid stalls

find all dependencies

track required delays between instructions
software pipelining: even across loop iterations

can be more than loads/stores

unroll loops to have more to fit in delays

3

Why bimodal: loops

for (int i = 0; i < 10000; i += 1) {
...

}

li $t0, 0 ; i <− 0
loop: ...

addiu $t0, $t0, 1
blt $t0, 10000, loop

4

Why bimodal: non-loops

char *data = malloc(...);
if (!data) handleOutOfMemory();

5

Why more than 1-bit?

for (int j = 0; j < 10000; ++j) {
for (int i = 0; i < 4; ++i) {

...
}

}

iteration last taken prediction correct?
0 — — —
1 yes taken yes
2 yes taken yes
3 yes taken yes
4 yes taken no
5 no not taken no
6 yes taken yes
… … … … 6

Saturating counters (1)

for (int j = 0; j < 10000; ++j) {
for (int i = 0; i < 4; ++i) {

...
}

}
iteration counter before prediction correct?
0 0? — —
1 1 taken yes
2 2 (MAX) taken yes
3 2 (MAX) taken yes
4 2 (MAX) taken no
5 1 taken yes
6 2 (MAX) taken yes
… … … …

7

Saturating counters (2)

for (int j = 0; j < 10000; ++j) {
for (int i = 0;; ++i) {

...
if (i == 3) break;

}
}
iteration counter before prediction correct?
0 0? — —
1 -1 (MIN) not taken yes
2 -1 (MIN) not taken yes
3 -1 (MIN) not taken yes
4 0 not taken no
5 -1 (MIN) not taken yes
6 -1 (MIN) not taken yes
… … … … 8

Local history: loops

for (int j = 0; j < 10000; ++j) {
for (int i = 0; i < 4; ++i) {
}

}

observation: taken/not-taken pattern is
NNNTNNNTNNNT…
construct table:
prior five results prediction

TNNNT N
NTNNN T
NNTNN N
NNNTN N

9

Local history predictor

10

Global history

if (x >= 0) ...
if (x <= 0) ...

result for prior branches prediction
…N T
…T N

11

Global history identifes branches

12

Global history predictor

13

Combining local and global

hash
together history and branch location

14

Combining generally

branch predictor predictor
counter per branch:

increment when first predictor is better
decrement when first predictor is worse

use first predictor if non-negative

2-bit saturating — predictor gets ‘second chance’

15

The experiments

16

Return address stack

Predicting function call return addresses
Solution: stack in processor registers

baz saved registers

baz return address

bar saved registers

bar return address

foo local variables

foo saved registers

foo return address

foo saved registers

stack in memory

baz return address

bar return address

foo return address

shadow stack
in CPU registers

17

Speculation: Loop termination
prediction

Predicting loops with fixed iteration counts

Solution: record last iteration count

(times since change of branch result)

address last # iters current #
0x040102 128 98
… … …

loop count table

for (int i = 0;
i < 128;
++i) {
...

}

18

Speculation: More

register value prediction

will two loads/stores alias each other?

…

19

Very Long Instruction Word
ADD R1, R2, R3 short

ADD R1, R2, R3 MOV R4, 10(R5) MUL R6, R7, R8 long

bundle of instructions
issued and execute together

20

VLIW Pipeline

Fetch Read Regs Execute (ALU) Memory Write Back

Normal RISC-like pipeline

time

Fetch Read Regs Execute (ALU) Memory Write Back

Fetch Read Regs Execute (ALU) Memory Write Back

Fetch Read Regs Execute (ALU) Memory Write Back

Longer instruction word pipeline

Fetch

fancy register file fancy cache??specialize slotsspecialize slots more

21

VLIW Pipeline

Fetch Read Regs Execute (ALU) Memory Write Back

Normal RISC-like pipeline

time

Fetch Read Regs Simple ALU — Write Back

Fetch Read Regs Address ALU Memory Write Back

Fetch Read Regs Int/Mul ALU 1 Int/Mul ALU 2 Write Back

Longer instruction word pipeline

Fetch

fancy register file fancy cache??specialize slotsspecialize slots more

21

Itanium

VLIW-derived processor
Called EPIC — tries to address some shortcomings
of VLIW
Intel designed ISA, introduced c. 2001
“Bundles” of 3 instructions:

1. Slot 1 — Usually Memory or Integer
2. Slot 2 — Usually Memory or Integer or Floating Point
3. Slot 3 — Usually Integer or Floating Point or Branch

Example assembly:
{ .mmf ; Bundle of Memory/Memory/Float
LDFD f83 = [r35], r21 ; f83 <− MEM[r35+r21]
LDFD f89 = [r16], r21 ; f89 <− MEM[r16+r21]
FMA f11 = f43, f91, f11 ; f11 <− f43 * f91 + f11
}
{ .mmi ; Bundle of Memory/Memory/Integer
...

22

ELI-512

Bundles of 24+ ‘instructions’:
8 32-bit integer operations
8 64-bit integer/floating point operations
8 memory accesses
32 register accesses
1 very fancy conditional jump
?? register-register movements

Don’t want, e.g., a memory access?
put a no-op in that slot

23

ELI-512

Bundles of 24+ ‘instructions’:
8 32-bit integer operations
8 64-bit integer/floating point operations
8 memory accesses
32 register accesses
1 very fancy conditional jump
?? register-register movements

Don’t want, e.g., a memory access?
put a no-op in that slot

23

VLIW Pipeline

Fetch Read Regs Execute (ALU) Memory Write Back

Normal RISC-like pipeline

time

Fetch Read Regs Write Back

Fetch Read Regs Memory Write Back

Fetch Read Regs Write Back

Longer instruction word pipeline

Fetch

fancy register file

fancy cache??specialize slotsspecialize slots more

24

ELI-512: Multiple Register Banks

16 modules

each has own registers

explicitly move values between modules
25

ELI-512

Bundles of 24+ ‘instructions’:
8 32-bit integer operations
8 64-bit integer/floating point operations
8 memory accesses
32 register accesses
1 very fancy conditional jump
?? register-register movements

Don’t want, e.g., a memory access?
put a no-op in that slot

26

VLIW Pipeline

Fetch Read Regs Execute (ALU) Memory Write Back

Normal RISC-like pipeline

time

Fetch Read Regs Write Back

Fetch Read Regs Memory Write Back

Fetch Read Regs Write Back

Longer instruction word pipeline

Fetch

fancy register file

fancy cache??

specialize slotsspecialize slots more

27

ELI-512: Multiple Memory Banks

16 modules

each M module has own memory

explicitly choose which module to use
28

Compiler challenges

need 24+ indepedent instructions to fill bundle

not found in natural code

29

Solution for loops

Unroll it!
How do we know this is safe (e.g. no array overlap)?

Compiler does fancy equation solving
Doesn’t work? Can’t generate good code.

30

Solution for non-loops

Guess most common branches

Generate that code

Then generate compensation code for wrong guesses

31

Loop unroling for VLIW

for (i = 0; i < 15; i += 1) {
a[i] *= 2;

}

original code

for (i = 0; i < 15; i += 3) {
a[i+0] *= 2;
a[i+1] *= 2;
a[i+2] *= 2;

}

unroll x 3

loop:
/* bundle 1: */

a2 = a[i+2];
a0 *= 2; // loaded last iter
a1 *= 2;

/* bundle 2: */
a[i+0] = a0;
a[i+1] = a1;
nextI = i + 3;

/* bundle 3: */
a0 = a[nextI+0]; // load for next iter
a1 = a[nextI+1];
a2 *= 2;

/* bundle 4: */
a[i+2] = a2;
i = nextI;
if (nextI < 15) goto loop;

unroll x 3 + schedule

32

Trace scheduling: Interlocks?

ELI-512 and TRACE had no “interlocks”

no forwarding — longer delays

wrong answer if compiler doesn’t schedule properly

Forwarding logic would be too complex/slow

33

Trace scheduling

if (x > 0) {
a += 1;
if (y > 0) {

b *= c;
d −= e;

}
} else {

a −= 1;
}

original code
/* common case: */
a += 1;
newB = b * c;
newD = d − e;
/* compensation code: */
if (x <= 0) {

a −= 1;
newB = b;
newD = d

} else if (y <= 0) {
newB = b;
newD = d;

}

guess x > 0 and y > 0

reason for fancy
conditional jump

1st bundle:
add
multiply
subtract
conditional jump

common case is
one cycle

34

Assisting compilers

many registers
Itanium: 128 integer, 128 float, 128 condition
makes unrolling + rescheduling loops easier

conditional instructions
Itanium: every instruction can be conditional
e.g. add if condition register true
avoid expensive branches for short fixup code

35

Compiler speculation

Trace schedule ≈ compiler branch prediction
Itanium: explicit speculative loads

ld.s: load value only if valid address

Itanium: aliasing detection
ld.a: load value, watch for stores to address
chk.a: branch if that address was written since load

36

VLIW problems

bet on good compilers
recompile to increase bundle size

Itanium solution: bundles have ‘stop’ bit
assembler sets stop bit if dependency
otherwise, CPU can start at same time

compilers don’t know enough to schedule
will load use cache or take a long time?
Itanium solution: prefetch, speculative loads

37

The Itanium story

38

VLIW: Moving forward

Not the winner
Itanium is being phased out

some minor commerical VLIW architectures
(e.g. SHARC for digital signal processors)

things like trace scheduling done in hardware

39

branch prediction ≈ trace scheduling

if (x > 0) {
a += 1; /* common case */
if (y > 0) {

b *= c; /* common case */
d −= e; /* common case */

}
} else {

a −= 1;
}

good branch predictor runs common case

hardware will undo if wrong

40

Preview: Dynamic Issue

Fetch Schedule Read Regs Simple ALU — Write Back

Fetch Schedule Read Regs Address ALU Memory Write Back

Fetch Schedule Read Regs Int/Mul ALU Int/Mul ALU Write Back

multiple dynamic issue pipeline

Fetch
Buffer
and

Schedule

41

Next time: Precise interrupts

goal: reschedule (reorder) instructions
But…

page fault — enter OS to change page table, restart
I/O interrupt — run OS handler, restart
timer interrupt — OS save state, restores later

illusion of one-by-one in-order execution
OS doesn’t know about internals of pipelines
OS saves/restores registers + single current instruction

42

