
CS 6354: Homework 1 Post-Mortem
/ MIPS R10000

26 September 2016

1

To read more…

This day’s paper:
Yeager, “The MIPS R10000 Superscalar microprocessor”

Also discussed:
Homework 1 on caches

Supplementary readings:
Kanter, “Intel’s Haswell CPU Microarchitecture”

1

MIPS R10000: Weird names

instruction queue ≈ (shared) reservation station

active list ≈ reorder buffer

both don’t store values — actually in register file

2

MIPS R10000: Stages

3

MIPS R10000: Register
Renaming/Queues

4

MIPS R10000: Register Renaming

explicit register map data structure

5

MIPS R10000: Instruction Queue

6

MIPS R10000: Instruction Queue v.
Reservation Station

shared register file

queue only tracks register numbers

metadata:

branch mask — for branch mispredicts

ready bits — local copy of busy bits

pointer to active list (ROB)

7

MIPS R10000: Functional Units

8

Moving load/stores around
program order desired (fast) order
store X load Z
store Y store X
load Z store Y

what if X == Z or Y == Z?

9

Moving load/stores around
program order desired (fast) order
store X load Z
store Y store X
load Z store Y

what if X == Z or Y == Z?

9

MIPS R10000: Memory requests

16 entry address queue

kept in program order

tracks dependencies (overlapping memory accesses)

special-case for two accesses to same cache set

match cache accesses against all loads

load to store forwarding

10

MIPS R10000: Synchronization

execute memory accesses in order

… in case other processors are listening

treat like exception if other processors are listening

11

LL/SC atomic increment

retry: // $t0 ← value
ll $t0, value

// $t0 < $t0 + 1
addi $t0, $t0, 1

// value ← $t0 if memory unchanged
// $t0 ← 1 if stored, 0 otherwise
sc $t0, value

// if sc unsuccessful, goto retry
beqz $t0, retry
nop // (delay slot)

12

MIPS R10000: Weird Tricks

predecoding in instruction cache — opcode
preprocessed

instruction cache specialized for unaligned accesses
within a block

multibanked data cache — half the sets in one
cache, half in another

13

core storage (approx sizes)

data — approx 8KB
register files — 8192 bits

metadata — approx 4KB
register map tables — 390 bits
free list — 192 bits
active list — 672 bits
busy bits: — 128 bits
instruction queues — 1600 bits
address queue — 1232 bits

14

SGI’s workload

graphics

lots of floating point

big images

15

evolution of modern processors
MIPS R10000 (1996) Intel Haswell (2013)

fetch/cycle 4 instructions 5 instructions
reorder buffer 32 entry 192 entry
instruction queue 16 int + 16 FP + 16 mem 60 unified
execute/cycle 2 int + 2 FP 2 int/FP + 2 int
memory/cycle 1 load or store 2 load + 1 store
operand width 32 bit 32 bit to 256 bit
L1 cache 32K I, 32K D 32K I, 32K D
L2 cache off-chip 256K
L3 cache none 1+MB
L1 TLB 64 entry 64 entry D, 64 entry I
L2 TLB none 1024 entry
predecoding in I-cache micro-op cache
branch pred. local, 512 entry ???

cores/package
1 2–18

threads/core
1 2

16

evolution of modern processors
MIPS R10000 (1996) Intel Haswell (2013)

fetch/cycle 4 instructions 5 instructions
reorder buffer 32 entry 192 entry
instruction queue 16 int + 16 FP + 16 mem 60 unified
execute/cycle 2 int + 2 FP 2 int/FP + 2 int
memory/cycle 1 load or store 2 load + 1 store
operand width 32 bit 32 bit to 256 bit
L1 cache 32K I, 32K D 32K I, 32K D
L2 cache off-chip 256K
L3 cache none 1+MB
L1 TLB 64 entry 64 entry D, 64 entry I
L2 TLB none 1024 entry
predecoding in I-cache micro-op cache
branch pred. local, 512 entry ???

cores/package
1 2–18

threads/core
1 2

16

evolution of modern processors
MIPS R10000 (1996) Intel Haswell (2013)

fetch/cycle 4 instructions 5 instructions
reorder buffer 32 entry 192 entry
instruction queue 16 int + 16 FP + 16 mem 60 unified
execute/cycle 2 int + 2 FP 2 int/FP + 2 int
memory/cycle 1 load or store 2 load + 1 store
operand width 32 bit 32 bit to 256 bit
L1 cache 32K I, 32K D 32K I, 32K D
L2 cache off-chip 256K
L3 cache none 1+MB
L1 TLB 64 entry 64 entry D, 64 entry I
L2 TLB none 1024 entry
predecoding in I-cache micro-op cache
branch pred. local, 512 entry ???

cores/package
1 2–18

threads/core
1 2

16

Micro-ops

complex instruction encodings don’t allow
pre-decode trick

complex insturctions can’t go to a single functional
unit

trick: split into micro-ops

extra decoding step

Intel Haswell: cache for micro-ops

17

Homework 1: Rubric

140 points total: For each thing benchmarked:
5 points: benchmark description, including how to read
results
5 points: raw results and code are included, match
description, interpreted plausibly

10 points: tested system described, report parts
clear

18

Homework 1: General Concerns:
Benchmarking Discipline

how consistent are your measurements?

is that really an increase?

be honest

19

Homework 1: General Concerns:
Latency v. Bandwidth

bandwidths much better than latencies (everywhere)

memory system relies on overlapping many memory
accesses

measuring sizes? better to measure latency

better to avoid prefetching — e.g. random access
pattern, pointer chasing

20

Next Time: SMT

multiple threads on one core

later: multiple processors/cores

21

Definition: Thread

stream of program execution

own registers

own program counter (current instruction pointer)

may or may not share memory

appears to execute at same time as other threads

22

Multithreading

thread_one_func(int offset) {
for (int i = 0; i < N / 2; ++i)

sum1 += array[offset + i];
}
thread_two_func() {

for (int i = N / 2; i < N; ++i)
sum2 += array[i];

}
compute_sum() {

thread_one = thread_create(thread_one_func);
thread_two = thread_create(thread_two_func);
wait_for_thread(thread_one);
wait_for_thread(thread_two);
sum = sum1 + sum2;

}
23

Different Parallelism

instruction-level parallelism
sequential sequence of instructions
not actually sequential
transparent to programmer

next up: thread-level parallelism
multiple sequential sequences of instructions
run in parallel (apparently)
exposed to programmer

later: vectorization
sequential sequence of instructions
that each does multiple copies of the same thing
exposed to programmer

24

Flynn’s Taxonomy
Single instruction Multiple instruction

Single data serial ???
Multiple data vectors threads

25

