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To read more…

This day’s paper:
Yeager, “The MIPS R10000 Superscalar microprocessor”

Also discussed:
Homework 1 on caches

Supplementary readings:
Kanter, “Intel’s Haswell CPU Microarchitecture”
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MIPS R10000: Weird names

instruction queue ≈ (shared) reservation station

active list ≈ reorder buffer

both don’t store values — actually in register file
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MIPS R10000: Stages
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MIPS R10000: Register
Renaming/Queues
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MIPS R10000: Register Renaming

explicit register map data structure
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MIPS R10000: Instruction Queue
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MIPS R10000: Instruction Queue v.
Reservation Station

shared register file

queue only tracks register numbers

metadata:

branch mask — for branch mispredicts

ready bits — local copy of busy bits

pointer to active list (ROB)
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MIPS R10000: Functional Units
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Moving load/stores around
program order desired (fast) order
store X load Z
store Y store X
load Z store Y

what if X == Z or Y == Z?
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MIPS R10000: Memory requests

16 entry address queue

kept in program order

tracks dependencies (overlapping memory accesses)

special-case for two accesses to same cache set

match cache accesses against all loads

load to store forwarding
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MIPS R10000: Synchronization

execute memory accesses in order

… in case other processors are listening

treat like exception if other processors are listening
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LL/SC atomic increment

retry: // $t0 ← value
ll $t0, value

// $t0 < $t0 + 1
addi $t0, $t0, 1

// value ← $t0 if memory unchanged
// $t0 ← 1 if stored, 0 otherwise
sc $t0, value

// if sc unsuccessful, goto retry
beqz $t0, retry
nop // (delay slot)
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MIPS R10000: Weird Tricks

predecoding in instruction cache — opcode
preprocessed

instruction cache specialized for unaligned accesses
within a block

multibanked data cache — half the sets in one
cache, half in another
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core storage (approx sizes)

data — approx 8KB
register files — 8192 bits

metadata — approx 4KB
register map tables — 390 bits
free list — 192 bits
active list — 672 bits
busy bits: — 128 bits
instruction queues — 1600 bits
address queue — 1232 bits
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SGI’s workload

graphics

lots of floating point

big images
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evolution of modern processors
MIPS R10000 (1996) Intel Haswell (2013)

fetch/cycle 4 instructions 5 instructions
reorder buffer 32 entry 192 entry
instruction queue 16 int + 16 FP + 16 mem 60 unified
execute/cycle 2 int + 2 FP 2 int/FP + 2 int
memory/cycle 1 load or store 2 load + 1 store
operand width 32 bit 32 bit to 256 bit
L1 cache 32K I, 32K D 32K I, 32K D
L2 cache off-chip 256K
L3 cache none 1+MB
L1 TLB 64 entry 64 entry D, 64 entry I
L2 TLB none 1024 entry
predecoding in I-cache micro-op cache
branch pred. local, 512 entry ???

cores/package
1 2–18

threads/core
1 2
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Micro-ops

complex instruction encodings don’t allow
pre-decode trick

complex insturctions can’t go to a single functional
unit

trick: split into micro-ops

extra decoding step

Intel Haswell: cache for micro-ops
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Homework 1: Rubric

140 points total: For each thing benchmarked:
5 points: benchmark description, including how to read
results
5 points: raw results and code are included, match
description, interpreted plausibly

10 points: tested system described, report parts
clear
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Homework 1: General Concerns:
Benchmarking Discipline

how consistent are your measurements?

is that really an increase?

be honest
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Homework 1: General Concerns:
Latency v. Bandwidth

bandwidths much better than latencies (everywhere)

memory system relies on overlapping many memory
accesses

measuring sizes? better to measure latency

better to avoid prefetching — e.g. random access
pattern, pointer chasing
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Next Time: SMT

multiple threads on one core

later: multiple processors/cores
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Definition: Thread

stream of program execution

own registers

own program counter (current instruction pointer)

may or may not share memory

appears to execute at same time as other threads
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Multithreading

thread_one_func(int offset) {
for (int i = 0; i < N / 2; ++i)

sum1 += array[offset + i];
}
thread_two_func() {

for (int i = N / 2; i < N; ++i)
sum2 += array[i];

}
compute_sum() {

thread_one = thread_create(thread_one_func);
thread_two = thread_create(thread_two_func);
wait_for_thread(thread_one);
wait_for_thread(thread_two);
sum = sum1 + sum2;

}
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Different Parallelism

instruction-level parallelism
sequential sequence of instructions
not actually sequential
transparent to programmer

next up: thread-level parallelism
multiple sequential sequences of instructions
run in parallel (apparently)
exposed to programmer

later: vectorization
sequential sequence of instructions
that each does multiple copies of the same thing
exposed to programmer
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Flynn’s Taxonomy
Single instruction Multiple instruction

Single data serial ???
Multiple data vectors threads
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