
CS 6354: SMT

28 September 2016

1



To read more…

This day’s papers:
Tullsen et al, “Exploiting choice: instruction fetch and issue on an
implementable simultaneous multithreading processor”
Alverson et al, “The Tera Computer System”

Supplementary Reading:
Hennessy and Patterson, Computer Architecture: A Quanitative Approach,
Section 3.12
Kongetira et al, “Niagara: A 32-Way Multithreaded Sparc Processor”
Shin and Lipasti, Modern Processor Design, Section 11.4.4

1



Definition: Thread

stream of program execution

own registers

own program counter (current instruction pointer)

may or may not share memory

appears to execute at same time as other threads

2



Multithreading

thread_one_func(int offset) {
for (int i = 0; i < N / 2; ++i)

sum1 += array[i];
}
thread_two_func() {

for (int i = N / 2; i < N; ++i)
sum2 += array[i];

}
compute_sum() {

thread_one = thread_create(thread_one_func);
thread_two = thread_create(thread_two_func);
wait_for_thread(thread_one);
wait_for_thread(thread_two);
sum = sum1 + sum2;

}
3



OS context switches
sum1 += array[offset + 0];
if (0 < N / 2) goto done1;
...
sum1 += array[offset + 1940];
if (1940 < N / 2) goto done1;

copy registers to memory
OS runs

load registers from memory

timer interrupt/exception

return from interrupt/exception
sum2 += array[offset + N/2 + 0];
if (0 < N / 2) goto done2;
...
sum2 += array[offset + N/2 + 1849];
if (1849 + N / 2 < N) goto done2;

4



threads state AKA context

externally visible:
program counter (current instruction)
(program-visible) registers
(address of page table)

maybe shared between threads: memory

threads may or may not be in seperate programs

5



two approaches

Exploiting Choice Tera

out-of-order in-order

choose thread dynamically round-robin between threads

many register name maps many register files

schedule when ready compiler-specified delays

reorder buffer in-order completion
imprecise exceptions

1-cycle data cache 70-cycle data memory
6



Tera: Is it usable?

minimum of nine threads to get full throughput
×256 CPUs = 2304 threads

10 20 30 40 50 60

5

10

15

20

5% serial

10% serial

25% serial
50% serial

0% serial

Degree of Parallelism (1=serial)

Sp
ee

du
p

(1
=

se
ria

l)

Amdahl’s Law

7



Tera: Is it usable?

minimum of nine threads to get full throughput
×256 CPUs = 2304 threads

10 20 30 40 50 60

5

10

15

20

5% serial

10% serial

25% serial
50% serial

0% serial

Degree of Parallelism (1=serial)

Sp
ee

du
p

(1
=

se
ria

l)

Amdahl’s Law

7



Tera: the commercial version

Tera/Cray MTA (1997) — described in paper (took
7 years!)

Cray MTA-2 (2002)

Cray XMT (2009) — combines with conventional
processors for I/O

not advertised anymore

8



a complaint

Why doesn’t Tera paper compare to
superscalar/out-of-order?

1960s: IBM, Control Data Corp. machines
1988: Motorola MC88100
1989: Intel i960CA
Tera paper
1990: AMD 29000
1992: DEC Alpha 21064
1993: Pentium
1994: MIPS R8000

9



a complaint

Why doesn’t Tera paper compare to
superscalar/out-of-order?

1960s: IBM, Control Data Corp. machines
1988: Motorola MC88100
1989: Intel i960CA
Tera paper
1990: AMD 29000
1992: DEC Alpha 21064
1993: Pentium
1994: MIPS R8000

9



thread state — running superscalar

10



thread state AKA context

externally visible:
program counter (current instruction)
(program-visible) registers

internal:
queued instructions
reorder buffer
program counters
branch prediction info
physical register values
register map

11



modern SMT systems

most Intel desktop/laptop chips — 2 threads/core
2nd gen. Pentium 4 (“NetBurst”) (2002)

Oracle SPARC T5 (2013) — 8 threads/core
SPARC T1 (2005) — 4 threads/core

IBM POWER8 (2013) — 8 threads/core
POWER5 (2004) — 2 threads/core

12



running two threads

no context switch

duplicate thread state

13



shared resources

caches

instruction queues

functional units (adders, multipliers, etc.)

load/store queue

physical registers

14



duplicated resources

program counters

return address stack (branch prediction)

register maps

reorder buffer???

15



thread ids added to resources

branch target buffer — phantom branches

16



8-issue processor??

maximum throughput: 8 instructions/cycle
actual throughput: approx. 4.5

17



what workloads benefit?

two floating point intensive threads?
how many floating point adders?

two intensive integer threads?
how many integer ALUs?

two cache-bound threads?
how many cache accesses per cycle?

two branch-heavy threads?

18



one intuition

SMT

multi
core

Figure from Fedorova et al, “Chip multithreading systems need a new operating system scheduler”, 2004 19



variable gains

Figure from Funston, et al, “An SMT-Selection Metric to Improve Multithreaded Applications’ Performance”, IPDPS 2012 20



added complexity?

huge number of registers — slower regfile
Exploiting Choice: useful for single thread

more complex interrupt logic
Tera: imprecise arithmetic exceptions
Tera: in-order completion

fetch/branch logic
Tera: fetch logic = issue logic

21



removed complexity?

Tera: no data cache
just have more parallelism!

hide long-latency instructions
instead of better branch prediction
instead of faster ALUs

22



round-robin variants

baseline (1.8)
cycle 1: 8 from thread 1
cycle 2: 8 from thread 2
cycle 3: 8 from thread 1
cycle 4: 8 form thread 2

multiple threads at a time (2.4)
cycle 1: 4 from thread 1, 4 from thread 2
cycle 2: 4 from thread 1, 4 from thread 2
…

23



round-robin performance

24



priority-based fetch

fetch more for faster/more starved threads

less unresolved branches

less cache misses

less pending instructions

25



priority-based fetch

26



Tera: thread creation

CREATE instruction

no OS intervention

OS can later move each thread between processors

27



Exploiting Choice: thread creation

not specified

Intel mechanism: each thread looks like processor

same as multiple processors

“logical processor/core”

28



Tera: hypertorus

16x16x16 version of:

Image: Wikimedia Commons user おむこさん志望 29



Tera: Synchronization

no caches — single copy of all data

complex commands to memory:
read
write
read/write when ready
fetch and add

30



FMA: optimization or benchmark
cheat?

Fused Multiply-Add A = B × C + D

single instruction/functional unit use

gives 2 floating point operations/cycle/functional
unit

really helps dense matrix math

31



Next week: multiple processors

C.mmp — one of the earliest multiprocessor

T3E — supercomputer from the 90s

32



Some weird terminology in C.mmp

not something you are expected to know:

C.mmp deals with core memory (1950s-1970s)

tiny metal rings, magnetized to store a bit
read:

1. set magnetization direction to ‘0’
2. triggers signal if old direction was ‘1’
3. rewrite value to old direction

steps 1-2: access time

steps 1-3: cycle time
33



C.mmp distractions

lots of software issues that don’t really concern
multiprocessor

you can skim/skip these parts

34



things to think about when reading

challenges in making multiprocessor machine

design of the networks

how does one program these machines?

how does one coordinate between threads?

how well are threads isolated from each other?

what changes from the uniprocessor were required?

35


