
CS 6354: Processor Networks

5 October 2016

1

To read more…

This day’s papers:
Scott, “Synchronization and Communication in the T3E Multiprocessor”
C.mmp—A multi-mini-processor

Supplementary readings:
Hennessy and Patterson, section 5.1–2

1

Homework 1 Post-Mortem

Almost all students had trouble with:
associativity (TLB or cache)
TLB size
instruction cache size

Many not-great results on:
latency and throughput
block size

2

HW1: Cache assoc.

From Yizhe Zhang’s submission:

3

HW1: Cache assoc.

Example: 2-way assoc. 4-entry cache

addresses
set 0 (addr mod 2 == 0) 0/2
set 1 (addr mod 2 == 1) 1/3

pattern: 0/1/2/3/0/1/2/3/…(0/4 misses)

addresses
set 0 (addr mod 2 == 0) 0/2 (after 2) 2/4 (after 4) 4/0 (after 0)
set 1 (addr mod 2 == 1) 1/3

pattern: 0/1/2/3/4/0/1/2/3/4/…(3/5 misses)

addresses
set 0 (addr mod 2 == 0) 0/2 (after 2) 2/4 (after 4) 4/0 (after 0)
set 1 (addr mod 2 == 1) 1/3 (after 3) 3/5 (after 5) 5/1 (after 1)

pattern: 0/1/2/3/4/5/0/1/2/3/4/5/…(6/6 misses)

4

HW1: Cache assoc. nits

Problem: virtual != physical addresses

Solution 1: Hope addresses are contiguous (often
true shortly after boot)

Solution 2: Special large page allocation functions

5

HW1: TLB associativity

Things which seem like they should work (and full
credit):

Strategy 1 — same as for cache, but stride by page
size

Strategy 1 — stride = TLB reach, how many fit

Strategy 2 — stride = TLB reach / guessed
associativity

idea: will get all-misses with # pages = associativity

6

My TLB size results

7

My TLB associativity results (L1)

8

My TLB associativity results (L2)

9

TLB benchmark: controlling cache
behavior

page table:
virtual page number physical page number
1000 13248
1001 13248
1002 13248
1003 13248
1004 13248
1005 13248
… …

10

TLB benchmark: preventing
overlapping loads

multiple parallel page table lookups

don’t want that for measuring miss time

index = index + stride + array[value];

force dependency

also an issue for many other benchmarks

11

Instruction cache benchmarking

Approx two students successful or mostly successful

Obstacle one: variable length programs?

Obstacle two: aggressive prefetching

12

Variable length programs

Solution 1: Write program to generate source code
many functions of different lengths
plus timing code
multimegabyte source files

Solution 2: Figure out binary for ’jmp to address’
allocate memory
copy machine code to region
add return instruction
call as function (cast to function pointer)

13

Avoiding instruction prefetching

Lots of jumps (unconditional branches)!

Basically requires writing assembly/machine code

Might measure branch prediction tables!

14

HW1: Choose two most popular

prefetching stride — see when increasing stride
matches random pattern of same size

multicore/thread throughput — run MT code

large pages — straightforward if you can allocate
large pages

15

HW1: optimization troubles

int array[1024 * 1024 * 128];
int foo(void) {

for (int i = 0; i < 1024 * 1024 * 128; ++i) {
array[i] = 1;

}
}

unoptimized loop: gcc -S foo.c

.L3:
movl −4(%rbp), %eax // load 'i'
cltq
movl $1, array(,%rax,4) // 4−byte store 'array[i]'
addl $1, −4(%rbp) // load+add+store 'i'
movl −4(%rbp), %eax // load 'i'
cmpl $134217727, %eax
jbe .L3

16

HW1: optimization troubles

int array[1024 * 1024 * 128];
int foo(void) {

for (int i = 0; i < 1024 * 1024 * 128; ++i) {
array[i] = 1;

}
}

optimized loop: gcc -S -Ofast -march=native foo.c

.L4:
addl $1, %eax // 'i' in register
vmovdqa %ymm0, (%rdx) // 32−byte store
addq $32, %rdx
cmpl %ecx, %eax
jb .L4

16

HW1: optimization troubles

int array[1024 * 1024 * 128];
int foo(void) {

for (int i = 0; i < 1024 * 1024 * 128; ++i) {
array[i] = 1;

}
}

16

HW1: Misc issues

allowing overlap (no dependency/pointer chasing)
hard to see cache latencies
wrong for measuring latency
but right thing for throughput

not trying to control physical addresses
easy technique — large pages
sometimes serious OS limitation

controlling measurement error
is it a fluke? how can I tell?

17

Homework 2

checkpoint due Saturday Oct 15

using gem5, a processor simulator

analyzing statistics from 4 benchmark programs

you will need: a 64-bit Linux environment (VM okay,
no GUI okay)

… or to build gem5 yourself

18

multithreading

before: multiple streams of execution within a
processor

shared almost everything (but extras)
shared memory

now: on multiple processors
duplicated everything except…
shared memory (sometimes)

19

a philosophical question

multiprocessor
machine

network
of machinesdividing line?

20

C.mmp worries

efficient networks

memory access conflicts

OS software complexity

user software complexity

21

C.mmp worries

efficient networks

memory access conflicts

OS software complexity

user software complexity

21

topologies for processor networks

crossbar

shared bus

mesh/hypertorus

fat tree/Clos network

22

crossbar (approx. C.mmp switch)

MEM1

MEM2

MEM3

MEM4

CPU1 CPU2 CPU3 CPU4
23

crossbar (approx. C.mmp switch)

MEM1

MEM2

MEM3

MEM4

CPU1 CPU2 CPU3 CPU4
23

shared bus

CPU1 CPU2 CPU3 CPU4 MEM1 MEM2

tagged messages — everyone gets everything, filters

arbitrartion mechanism — who communicates

contention if multiple communicators

24

hypermesh/torus

Image: Wikimedia Commons user おむこさん志望 25

hypermesh/torus communication

some nodes are closer than others

take advantage of physical locality

multiple hops — need routers

simple algorithm:
get to right x coordinate
then y coordinate
then z coordinate

26

trees

CPU0

CPU1

CPU3

CPU8 CPU9

CPU4

CPU2

CPU6 CPU7

27

trees (thicker)

CPU0

CPU1

CPU5 CPU6 CPU7 CPU8

CPU2 CPU3 CPU4

28

trees (alternative)

Router0

Router1

CPU0 CPU1

Router2

CPU3 CPU4

29

fat trees

CPU0

CPU1

CPU3

CPU8 CPU9

CPU4

CPU2

CPU6 CPU7

30

fat trees

don’t need really thick/fast wires

take bundle of switches

Figure from Al-Fares et al, “A Scalable, Commodity Data Center Network Architecture”, SIGCOMM’08 31

minimum bisection bandwidth

half of the CPUs communicate with other half
what’s the worst case:

crossbar: same as best case
fat tree, folded Clos: same as best case

or can be built with less (cheaper)

tree: 1/N of best (everything through root)
shared bus: 1/N of best (take turns)
hypertorus: in between

32

other network considerations
crossbar fat tree (full BW) hypertorus bus

bandwidth N N
d
√

N 1
max hops 1 2k d

d
√

N 1
switches 1 k N 0
switch capacity N 2k 2d —
short cables no no yes yes

non-asymptotic factors omitted

N : number of CPUs

k: switch capacity

d: number of dimensions in hypertorus
33

metereological simulation

compute_weather_at(int x, int y) {
for step in 1,...,MAX_STEP {

weather[step][x][y] = computeWeather(
weather[step−1][x−1][y],
weather[step−1][x][y−1],
weather[step−1][x][y],
weather[step−1][x+1][y],
weather[step−1][x][y+1]

);
BARRIER();

}
}

34

barriers

wait for everyone to be done

two messages on each edge of tree

CPU0

CPU1

CPU3 CPU4

CPU2

CPU6 CPU7

35

C.mmp worries

efficient networks

memory access conflicts

OS software complexity

user software complexity

36

memory access conflicts

assumption: memory distributed randomly

may need to wait in line for memory bank

makes extra processors less effective

37

T3E’s solution

local memories

explicit access to remote memories

programmer/compiler’s job to decide

tools to help:
centrifuge — regular distribution across CPUs
virtual processor numbers + mapping table

38

hiding memory latencies

C.mmp — don’t; CPUs were too slow

T3E local memory — caches

T3E remote memory — many parallel accesses
need 100s to hide multi-microsecond latencies

39

programming models

T3E — explicit accesses to remote memory

programmer must find parallelism in accesses

C.mmp — maybe OS chooses memories?

40

caching

C.mmp — read-only data only

T3E — local only
remote accesses check cache next to memory

41

caching shared memories

CPU1 CPU2 MEM1
address value
0xA300 100
0xC400 200
0xE500 300

address value
0x9300 172
0xA300 100
0xC500 200

CPU1 writes 101 to 0xA300?

When does this change?

When does this change?

42

caching shared memories

CPU1 CPU2 MEM1
address value
0xA300 100101
0xC400 200
0xE500 300

address value
0x9300 172
0xA300 100
0xC500 200

CPU1 writes 101 to 0xA300?

When does this change?

When does this change?

42

simple shared caching policies

don’t do it — T3E policy

if read-only — C.mmp policy

tell all caches about every write
“free” if write-through policy and shared bus

43

all caches know about every write?

doesn’t scale

worse than write-through with one CPU!

wait in line behind other processors to send write

(or overpay for network)

44

next week: better strategies

don’t want one message for every write

will require extra bookkeeping

next Monday — for shared bus

next Wednesday — for non-shared-bus

45

C.mmp synchronization

C.mmp: locking — exclusive use of OS resource

concern about granularity:

too much overhead from locking?

too much overhead from waiting for lock?

46

T3E synchronization

atomic operations — easy, executed at one location

read-modify-write commands to remote memory

compare-and-swap-if-equal

read-and-add

47

compare-and-swap

compare−and−swap(address, expect−old−value, new−value) {
atomically {

if (expect−old−value == memory[address]) {
memory[address] = new−value

}
}

}

48

locks with compare-and-swap

// compare−and−swap(address,
// expect−old−value,
// new−value) == 1 if changed
while (!compare−and−swap(&lock, 0, 1)) {}

// keep trying until value is 0

// use shared resource here

lock = 0; // release lock

49

memory traffic and the lock

CPU1,1 CPU1,2 CPU1,3

CPU2,1 CPU2,2 CPU2,3

CPU3,1 CPU3,2 CPU3,3

is it ready yet? now? now? …

performance lost here because of CPU1,1!

50

memory traffic and the lock

CPU1,1 CPU1,2 CPU1,3

CPU2,1 CPU2,2 CPU2,3

CPU3,1 CPU3,2 CPU3,3

is it ready yet? now? now? …

performance lost here because of CPU1,1!

50

lock-free queue

struct queue { int value; struct queue *next; };
struct queue *head;
void addToQueue(int value) {

struct queue *newEntry = allocateNew(value);
do {

newEntry−>next = head; // read head
// other thread might change head here!
// replace head if not changed yet

} while (compare−and−swap(&head,
newEntry−>next, newEntry));

}

51

lock-free/wait-free data structures

use atomic operations ‘directly’ (no lock)

very tricky to reason about

wait-free: program makes progress even if one thread
stops

52

T3E alternative: message queues

atomic “add to remote queue” operation
only keep retrying if remote queue was full

check own queue — repeatedly read local memory

no extra traffic

53

shared memory synchronization

usually ‘just’ atomic ‘read-modify-write’ operations
compare-and-swap
read-and-add

later: using these to implement locks

later: transactional memory: an alternative to
read/modify/write

54

papers for next time

Goodman, “Using cache memory to reduce
processor-memory traffic”

seminal paper on cache coherency

Archibald and Baer, “Cache coherence protocols:
evaluation using a multiprocessor simulation model

several expansions on Goodman’s work

55

Snooping coherency trick

Listen to other cache’s requests to memory

Respond with data if requested
even though request was for memory, not you

Allows write-back policy

56

