
CS6354: Snooping Cache Coherency

7 October 2016

1



To read more…

This day’s papers:
Goodman, “Using cache memory to reduce processor-memory traffic”
Archibald and Baer, “Cache Coherence Models: Evaluation Using a
Multiprocessor Simulation Model”

Supplementary readings:
Hennessy and Patterson, section 5.3

1



caching shared memories

CPU1 CPU2 MEM1
address value
0xA300 100
0xC400 200
0xE500 300

address value
0x9300 172
0xA300 100
0xC500 200

CPU1 writes 101 to 0xA300?

When does this change?

When does this change?

2



caching shared memories

CPU1 CPU2 MEM1
address value
0xA300 100101
0xC400 200
0xE500 300

address value
0x9300 172
0xA300 100
0xC500 200

CPU1 writes 101 to 0xA300?

When does this change?

When does this change?

2



cache coherency states

extra information for each cache block
overlaps with valid, dirty bits

stored in each cache

different caches may have different states for same
block

3



scheme 1: MSI

read
write

write

read

read or writehear write

hear read or writeback

hear writeInvalidstart

Shared

Modified

required to writeleaving updates memory

triggered by others writing

dashed: overhead on bus; blue: message sent on bus
4



scheme 1: MSI

read
write

write

read

read or writehear write

hear read or writeback

hear writeInvalidstart

Shared

Modified

required to write

leaving updates memory

triggered by others writing

dashed: overhead on bus; blue: message sent on bus
4



scheme 1: MSI

read
write

write

read

read or writehear write

hear read or writeback

hear write
Invalidstart

Shared

Modified

required to write

leaving updates memory

triggered by others writing

dashed: overhead on bus; blue: message sent on bus
4



scheme 1: MSI

read
write

write

read

read or writehear write

hear read or writeback

hear write
Invalidstart

Shared

Modified

required to writeleaving updates memory

triggered by others writing

dashed: overhead on bus; blue: message sent on bus
4



scheme 1: MSI
State hear read hear write read write
Invalid — — Shared Modified
Shared — to Invalid Modified
Modified Shared Invalid — —

blue: transition sends bus signal

5



MSI example

CPU1 CPU2 MEM1
address value state
0xA300 100 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Shared
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

Cache sees write:
invalidate 0xA300

Memory updated*

CPU1 writes 102 to 0xA300

Modified state — nothing communicated!

Nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

Modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

Written back to memory early
(could also become Invalid at CPU1)

6



MSI example

CPU1 CPU2 MEM1
address value state
0xA300 100101 Modified
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

Cache sees write:
invalidate 0xA300

Memory updated*

CPU1 writes 102 to 0xA300

Modified state — nothing communicated!

Nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

Modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

Written back to memory early
(could also become Invalid at CPU1)

6



MSI example

CPU1 CPU2 MEM1
address value state
0xA300 101102 Modified
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

Cache sees write:
invalidate 0xA300

Memory updated*

CPU1 writes 102 to 0xA300

Modified state — nothing communicated!

Nothing changed yet (writeback)

“What is 0xA300?”

CPU2 reads 0xA300

Modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

Written back to memory early
(could also become Invalid at CPU1)

6



MSI example

CPU1 CPU2 MEM1
address value state
0xA300 102
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

Cache sees write:
invalidate 0xA300

Memory updated*

CPU1 writes 102 to 0xA300

Modified state — nothing communicated!

Nothing changed yet (writeback)

“What is 0xA300?”

CPU2 reads 0xA300

Modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

Written back to memory early
(could also become Invalid at CPU1)

6



MSI example

CPU1 CPU2 MEM1
address value state
0xA300 102 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

Cache sees write:
invalidate 0xA300

Memory updated*

CPU1 writes 102 to 0xA300

Modified state — nothing communicated!

Nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

Modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

Written back to memory early
(could also become Invalid at CPU1)

6



update memory

to write value (enter modified state), only need to
invalidate others

more efficient: shorter bus message

7



on cache replacement/writeback

still happens — e.g. want to store something else

changes state to invalid

requires writeback if modified (= dirty bit)

8



scheme 1: MSI
Modified value is different than memory and

I am the only one who has it

Shared value is the same as memory

Invalid I don’t have the value; I will need
to ask for it

9



MSI complaints

modifying (read then write then write) a value often
three messages:

initial read from memory

invalidate other caches (and maybe write to
memory) on initial write

final writeback

10



scheme 2: MESI
Modified value is different than memory and

I am the only one who has it

Exclusive value is same as memory and I am
the only one who has it

Shared value is the same as memory

Invalid I don’t have the value; I will need
to ask for it

11



scheme 2: MESI

read from memory

read
from
cache

write

write

read

hear read

writeread read or write

hear write

hear read

Invalidstart Exclusive

Shared Modified

blue = message sent

caches must respond
if they have a copy

change state and return unchanged valueneed to write value to memory
otherwise no one will

12



scheme 2: MESI

read from memory

read
from
cache

write

write

read

hear read

writeread read or write

hear write

hear read

Invalidstart Exclusive

Shared Modified

blue = message sent

caches must respond
if they have a copy

change state and return unchanged valueneed to write value to memory
otherwise no one will

12



scheme 2: MESI

read from memory

read
from
cache

write

write

read

hear read

writeread read or write

hear write

hear read

Invalidstart Exclusive

Shared Modified

blue = message sent

caches must respond
if they have a copy

change state and return unchanged value

need to write value to memory
otherwise no one will

12



read for ownership

reading to modify a value soon?

read into Exclusive state even if reading from cache

invalidate and read

second way to enter exclusive state

13



MESI complaints

have to update memory to share a modified value …
even though caches read from other caches

read from which cache?

14



scheme 2: MESI

read from memory

read
from
cache

write

write

read

hear read

writeread read or write

hear write

hear read

Invalidstart Exclusive

Shared Modified

blue = message sent

caches must respond
if they have a copy

change state and return unchanged value

need to write value to memory
otherwise no one will

15



scheme 3: MOESI
Modified value is different than memory and

I am the only one who has it

Owned value is different than memory and
I must update memory

Exclusive value is same as memory and I am
the only one who has it

Shared value is same as memory or cache
in Owned state

Invalid I don’t have the value 16



scheme 3: MOESI

read
memory

read
cache

write

write

read
hear
any write

read

read
or
write

hear read

hear write

hear write write

read

Invalid Exclusive

Shared

Modified

Owned

blue = message sent

send value to caches, but not memorywriting notifies other caches
(unlike Modified state)

invalidate only due to cache replacement

17



scheme 3: MOESI

read
memory

read
cache

write

write

read
hear
any write

read

read
or
write

hear read

hear write

hear write write

read

Invalid Exclusive

Shared

Modified

Owned

blue = message sent

send value to caches, but not memory

writing notifies other caches
(unlike Modified state)

invalidate only due to cache replacement

17



scheme 3: MOESI

read
memory

read
cache

write

write

read
hear
any write

read

read
or
write

hear read

hear write

hear write write

read

Invalid Exclusive

Shared

Modified

Owned

blue = message sent

send value to caches, but not memory

writing notifies other caches
(unlike Modified state)

invalidate only due to cache replacement

17



scheme 3: MOESI

read
memory

read
cache

write

write

read
hear
any write

read

read
or
write

hear read

hear write

hear write write

read

Invalid Exclusive

Shared

Modified

Owned

blue = message sent

send value to caches, but not memorywriting notifies other caches
(unlike Modified state)

invalidate only due to cache replacement

17



MOESI example

CPU1 CPU2 MEM1
address value state address value state

CPU1: “What is 0xA300”

Memory: “0xA300 = 100”CPU2: “What is 0xA300”CPU1: “0xA300 = 101”CPU2: “I’m changing 0xA300”

CPU1: read 0xA300
CPU1: write 0xA300
CPU1: read 0xA300
CPU2: read 0xA300
CPU2: write 0xA300

18



MOESI example

CPU1 CPU2 MEM1
address value state
0xA300 100 Exclusive

address value state

CPU1: “What is 0xA300”

Memory: “0xA300 = 100”

CPU2: “What is 0xA300”CPU1: “0xA300 = 101”CPU2: “I’m changing 0xA300”

CPU1: read 0xA300
CPU1: write 0xA300
CPU1: read 0xA300
CPU2: read 0xA300
CPU2: write 0xA300

18



MOESI example

CPU1 CPU2 MEM1
address value state
0xA300 100101 Modified

address value state

CPU1: “What is 0xA300” Memory: “0xA300 = 100”CPU2: “What is 0xA300”CPU1: “0xA300 = 101”CPU2: “I’m changing 0xA300”

CPU1: read 0xA300
CPU1: write 0xA300
CPU1: read 0xA300
CPU2: read 0xA300
CPU2: write 0xA300

18



MOESI example

CPU1 CPU2 MEM1
address value state
0xA300 101 Modified

address value state

CPU1: “What is 0xA300” Memory: “0xA300 = 100”CPU2: “What is 0xA300”CPU1: “0xA300 = 101”CPU2: “I’m changing 0xA300”

CPU1: read 0xA300
CPU1: write 0xA300
CPU1: read 0xA300
CPU2: read 0xA300
CPU2: write 0xA300

18



MOESI example

CPU1 CPU2 MEM1
address value state
0xA300 101 Modified

address value state

CPU1: “What is 0xA300” Memory: “0xA300 = 100”

CPU2: “What is 0xA300”

CPU1: “0xA300 = 101”CPU2: “I’m changing 0xA300”

CPU1: read 0xA300
CPU1: write 0xA300
CPU1: read 0xA300
CPU2: read 0xA300
CPU2: write 0xA300

18



MOESI example

CPU1 CPU2 MEM1
address value state
0xA300 101 Owned

address value state
0xA300 101 Shared

CPU1: “What is 0xA300” Memory: “0xA300 = 100”CPU2: “What is 0xA300”

CPU1: “0xA300 = 101”

CPU2: “I’m changing 0xA300”

CPU1: read 0xA300
CPU1: write 0xA300
CPU1: read 0xA300
CPU2: read 0xA300
CPU2: write 0xA300

18



MOESI example

CPU1 CPU2 MEM1
address value state
0xA300 101 Invalid

address value state
0xA300 101102 Modified

CPU1: “What is 0xA300” Memory: “0xA300 = 100”CPU2: “What is 0xA300”CPU1: “0xA300 = 101”

CPU2: “I’m changing 0xA300”

CPU1: read 0xA300
CPU1: write 0xA300
CPU1: read 0xA300
CPU2: read 0xA300
CPU2: write 0xA300

18



MSI versus MESI versus MOESI
CPU1: read 0xA300
CPU1: write 0xA300 MSI: invalidate
CPU1: read 0xA300
CPU2: read 0xA300 MSI/MESI: memory write
CPU2: write 0xA300 MSI: invalidate

19



Other cache coherency options

can invalidate instead of updating other caches on
write

invalidation message faster to send than new value

tradeoff: faster if other cache won’t use value

20



Dropping states from MOESI
Modified value is different than memory and

I am the only one who has it

Owned value is different than memory and
I must update memory

Exclusive value is same as memory and I am
the only one who has it

Shared value is same as memory or cache
in Owned state

Invalid I don’t have the value 21



Dropping states from MOESI
Modified value is different than memory and

I am the only one who has it

Owned value is different than memory and
I must update memory

Exclusive value is same as memory and I am
the only one who has it

Shared value is same as memory or cache
in Owned state

Invalid I don’t have the value 21



Mapping to the paper

MSI + reread to get in Modified: Synapse

MESI + full-write-to-invalidate: write-once

MOSI + forward-on-write: Berkeley

MESI + forward-on-write: Illinois

MESI + invalidate-on-write: Firefly

MOESI + forward-on-write: Dragon

22



“System Power”

sum of processor utilizations

how much time are CPUs spending waiting for bus

what about overlapping cache accesses and
computation??

23



overhead if almost no shared data

24



overheads without sharing data

sending invalidation signals no other cache needs

reloading value from memory no cache needs
(Synapse)

25



simulation caveats

workloads?

variation in hardware?

26



false sharing

cache blocks are shared even if you are accessing
different parts

huge performance problem with writes

27



Present-day snooping cache
coherency

AMD processors use MOESI

Intel uses something called MESIF

plus some techniques we’ll talk about next time

28



MESIF states
Modified value is different than memory and

I am the only one who has it

Exclusive value is same as memory and I am
the only one who has it

Shared value is same as memory

Invalid I don’t have the value

Forwarding value is same as memory and I
should provide it if requested

29



Forwarding state: lower traffic

Image from Kanter, “The Common System Interface: Intel’s Future Interconnect”
http://www.realworldtech.com/common-system-interface/5/ 30

http://www.realworldtech.com/common-system-interface/5/


Non-bus topologies

necessary to connect large numbers of caches

higher bandwidth — if you don’t broadcast
everything

next time: avoiding broadcast

31



timing trickiness

CPU1 CPU2

CPU3 CPU4
CPU1 is changing X

CPU4 is changing X

32



compare-and-swap

compare−and−swap(address, expect−old−value, new−value) {
atomically {

if (expect−old−value == memory[address]) {
memory[address] = new−value

}
}

}

33



Implementing compare-and-swap

get block into Exclusive or Modified state
read from memory/cache if necessary
invalidate other caches if necessary

compare, if value matches, do write (Modified state)

34



Coherency

common property: single ‘responsible’ cache for
possibly changed values

Owned, Exclusive, Modified states

responsible cache must reply to reads of address

variation:
when is responsibility acquired? (only on write?)
when is it relinguished? (only on other’s write?)

35


