
Directory-based Cache Coherency

1



To read more…

This day’s papers:
Lenoski et al, “The Directory-Based Cache Coherence Protocol for the
DASH Multiprocessor”

Supplementary readings:
Hennessy and Patterson, section 5.4
Molka et al, “Cache Coherence Protocol and Memory Performance of the
Intel Haswell-EP Architecture”
Le et al, “IBM POWER6 Microarchitecture”

1



Coherency

single ‘responsible’ cache for possibly changed values

can find out who is responsible

can take over responsibility

snooping: by asking everyone

optimizations:
avoid asking if you can remember (exclusive)
allow serving values from cache without going through
memory

2



Scaling with snooping

shared bus

even if not actually a bus — need to broadcast

paper last time showed us little benefit after approx.
15 CPUs

(but depends on workload)

worse with fast caches?

3



DASH topology

4



DASH: the local network

shared bus with 4 processors, one memory

CPUs are unmodified

5



DASH: directory components

6



directory controller pretending (1)

directory board pretends to be another memory
… that happens to speak to remote systems 7



directory controller pretending (2)

directory board pretends to be another CPU
… that wants/has everything remote CPUs do 8



directory states
Uncached-remote value is not cached elsewhere

Shared-remote value is cached elsewhere, un-
changed

Dirty-remote value is cached elsewhere, possibly
changed

9



directory state transitions

remote read

remote write/RFO

remote write/RFO

remote read

remote write/RFO

local write/RFO

remote read/writeback

uncachedstart

shared

dirty

get value from remote memory if leaving

10



directory state transitions

remote read

remote write/RFO

remote write/RFO

remote read

remote write/RFO

local write/RFO

remote read/writeback

uncachedstart

shared

dirty

get value from remote memory if leaving

10



directory information

state: two bits

bit-vector for every block: which caches store it?

total space per cache block:
bit vector: size = number of nodes
state: 2 bits (to store 3 states)

11



directory state transitions

remote read

remote write/RFO

remote write/RFO

remote read

remote write/RFO

local write/RFO

remote read/writeback

uncachedstart

shared

dirty

get value from remote memory if leaving

12



remote read: uncached/shared

remote CPU remote dir home dir home bus

read
read

read
value

value
value

13



directory state transitions

remote read

remote write/RFO

remote write/RFO

remote read

remote write/RFO

local write/RFO

remote read/writeback

uncachedstart

shared

dirty

get value from remote memory if leaving

14



read: dirty-remote
remote CPU remote dir home dir home bus owning dir owning bus

read!
read!

writeback and read!
read!
value

value
value (finish read) value

write value!

15



read-for-ownership: uncached

home bus home dir remote dir remote CPU

read to own
read to own

invalidate
you own it, value

value

16



read-for-ownership: shared
remote CPU remote dir home bus home dir other dir other busses

read to own
read to own

invalidate
invalidate

invalidate
done invalidate

you own it
value

17



read-for-ownership: dirty-remote
home dir remote dir remote CPU owning dir owning bus

read to own
read to own

read to own for remote
invalidate

transfer to remote
you own it

ack transfer

18



why the ACK

home directory remote 1 remote 2 remote 3

tra
nsf
er
to
2 you own it

transfer to 3 you own it

read to own
read to own for 1

huh?

19



dropping cached values

directory holds worst case

a node might not have a value the directory thinks it
has

20



NUMA

21



Big machine cache coherency?

Cray T3D (1993) — up to 256 nodes with 64MB of
RAM each

32-byte cache blocks

8KB data cache per processor

no caching of remote memories (like T3E)

hypothetical today: adding caching of remote
memories

22



Directory overhead: adding to T3D

T3D: 256 nodes, 64MB/node

32 bytes cache blocks: 2M cache blocks/node

256 bits for bit vector + 2 bits for state = 258
bits/cache block

64.5 MB/node in overhead alone

23



Decreasing overhead: sparse
directory

most memory not in any cache

only store entries for cached items

worst case?
8KB cache/node * 256 nodes = 2MB cached

2MB: 64K cache blocks

64K cache blocks * 258 bits/block ≈ 2 MB
overhead/node

24



Decreasing overhead: distributed
directory

most memory only stored in small number of caches

store linked list of nodes with item cached

each node has pointer to next entry on linked list

around 80 KB overhead/node

… but hugely more complicated protocol

25



Real directories: Intel Haswell-EP

2 bits/cache line — in-memory
.4% overhead
stored in ECC bits — loss of reliability

14KB cache for directory entries

cached entries have bit vector (who might have this?)

otherwise — broadcast instead

26



Real directories: IBM POWER6

1 bit/cache line — possibly remote or not
.1% overhead
stored in ECC bits — loss of reliability

extra bit for each cache line

no storage of remote location of line

27



Aside: POWER6 cache coherency

Tables: Le et al, “IBM POWER6 microarchitecture” 28



software distributed shared memory

can use page table mechanisms to share memory

implement MSI-like protocol in software

using pages instead of cache blocks

writes: read-only bit in page table

reads: remove from page table

really an OS topic

29



handling pending invalidations

can get requests while waiting to finish request

could queue locally

instead — negative acknowledgement

retry and timeout

30



what is release consistency?

“release” does not complete until prior operations
happen

idea: everything sensitive done in (lock)
acquire/release

31



example inconsistency

possibly if you don’t lock:
writes in any order (from different nodes)
reads in any order

32



simple inconsistencies

starting: shared A = B = 1
Node 1 Node 2
A = 2 x = B
B = 2 y = A
possible for x = 2, y = 1

33



timeline: out-of-order writes
Node 1 Mem Node 1 Node 2 Node 2 Cache home for A

set A = 2 (exclusiv
e)

set B = 2 (shared)

read B

B is 1 (cached)

read A

A is 2
invalidate B

done invalidate B
ACK set B = 2

34



timeline: out-of-order reads

Node 1 home for B home for A Node 2

set A = 2
set B = 2 read

B

B is 2

read A

A is 1

35



cost of consistency

wait for each read before starting next one

wait for ACK for each write that needs invalidations

36



release consistency utility

acquire lock — wait until someone else’s release
finished

release lock — your operations are visible

programming discipline: always lock

37



inconsistency

gets more complicated with more nodes

very difficult to reason about

topic of next Monday’s papers

38



implementing the release/fence

need to wait for all invalidations to actually complete

if a full fence, need to make sure reads complete, too

otherwise, let them execute as fast as possible

39



cost of implementing sequential
consistency

better consistency would stop pipelining of
reads/writes

recall: big concern of, e.g, T3E

dramatically increased latency

40



“livelock”
home dir remote 1 remote 2 remote 3

read

read for 3

2 is
own

er
you own it

not mine
read failed

read

read for 3

41



deadlock
A B C

read X read Y
read Z

bus
y

read X
bus

y

read Y
busy

read Z

buffer for one pending request
everyone out of space! 42



deadlock: larger buffer
A B C D E F

read U
read V

read W
read X read Y

read Z

bus
y

bus
y

busy

U = 1
read U’

Example: two buffered requests
everyone out of space! 43



mitigation 1: multiple networks

44



deadlock in requests

A B C

read X
read Y

writeback Xwriteback Y
sorry I’m busy sorry I’m busy

writeback Xwriteback Y
sorry I’m busysorry I’m busy

A, C waiting for ACK for it’s operation
out of space for new operations

45



deadlock detection

negative acknowledgements

timeout for retries

takes too long — enter deadlock mitigation mode

refuse to accept new requests that generate other
requests

46



deadlock response

47



validation: what they did

generated lots of test cases

deliberately varied order of operations a lot

48



better techniques for correctness (1)

techniques from program verification

usually on abstract description of protocol

challenge: making sure logic gate implementation
matches

49



better techniques for correctness (2)

specialized programming languages for writing
coherency protocols

still an area of research

50



efficiency of synchronization

special synchronization primitive — queue-based lock

problem without: hot spots

51



contended lock with
read-modify-write

best case: processors check value in cache, wait for
invalidation

on invalidation: every processor tries to
read-for-ownership the lock

one succeeds, but tons of network traffic

52



other directions in cache coherency

identify access patterns — write-once,
producer/consumer, etc.

can handle those better

pattern: processors read, then write value a lot?

optimization: treat those reads as read-exclusives

new states in coherency protocol to track pattern

53



next week: focus group

last approx 20 minutes of class: consultant from
CTE (Center for Teaching Excellence)

hope to get actionable feedback on how I can
improve this class (this semester and in the future)

please stay, but I won’t know

54



next time: papers

Adve and Gharachorloo. “Shared Memory
Consistency Models: A Tutorial”

Section 1 (only) of Boehm and Adve, “Foundations
of the C++ Concurrency Memory Model”

55


