CS6354: Memory models



To read more...

This day’s papers:
Adve and Gharachorloo, “Shared Memory Consistency Models: A Tutorial”
Boehm and Adve, “Foundations of the C++ Concurrency Memory Model”,
section 1 only

Supplementary readings:
Hennessy and Patterson, section 5.6
Sorin, Hill, and Wood. A Primer on Memory Consistency and Coherence.
Boehm, “Threads Cannot Be Implemented as a Library.”



double-checked locking

class Foo { // BROKEN code
private Helper helper = null;
public Helper getHelper() {
if (helper == null)
synchronized(this) {
if (helper == null)
helper = new Helper();
}

return helper;

}

int value;

// ...
}



double-checked locking

class Foo { // BROKEN code
private Helper helper = null;
public Helper getHelper() {
if (helper == null)
synchronized(this) {
if (helper == null)
helper = new Helper();
}

return helper;

}

int value;

// ...
}

helper.value write visible after he'lper write?



compare-and-swap

compare—and—swap (address, old, new) {
with ownership of *address in cache:
if (xaddress == old) {
*address = new;
return TRUE;
} else {
return FALSE;

}



CAS lock

Alleged lock with compare-and-swap:

class Lock {
int lockValue = 0;
void lock() {
while (!compare—and—swap(&lockValue,
0, 1)) {
// retry

}

void unlock() {
lockValue = 0;
}
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CAS lock: usage

Lock counterlLock;
int counter = 0;

Thread 1 Thread 2

counterLock. lock(); counterLock. lock();
counter += 1; counter += 1;
counterLock.unlock(); counterLock.unlock();

possible result: counter ==



CAS lock: broken timeline

(CPULDir/Mem | |CPU2Dir/Mem | [CPU2
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CAS lock: broken timeline

(CPULDir/Mem | |CPU2Dir/Mem | [CPU2

i read-to-own lock
lock = 0, you own |t
lock = 1 cache

read counter

counter = 0
counter : uffer)
lock = 0i(cache read-to-own lock
i writeback
lock = 0 lock = 0, you own it
: e‘goifo : lock = 1:(cached)

CPU2 gets lock before counter = 1 write is complete ‘




Writing lock before counter?

write buffering — hides their latency
lock release is LlockValue = 0 — nothing special

local write could happen faster than remote



CAS lock: fixed

class Lock {

int lockValue = 0;

void lock() {
while (!compare—and—swap(&lockValue,

0, 1)) {
// retry

}
MEMORY_FENCE() ;

}
void unlock() {

MEMORY_FENCE () ;
*lockValue = 0;

}s



fences

completely complete operations before fence
includes waiting for invalidations

.. but doesn’t change order of other threads



the acquire/release model

acquire — one-way fence:

operations after acquire aren’t done earlier

release — one-way fence:

operations before release aren’t done later
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memory inconsistency on x86

x=y=20
thread 1 thread 2
X = 1; y = 1;

ri=1y; r2 = X;
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possible orders

Thread 1 Thread 2 Thread 1 Thread 2
X =1 X =1
Yy =1 ri =y
ri =y y =1
r2z =X r2z =X
rit ==1 r2 ==1 Ir1 == r2 ==1
Thread 1 Thread 2
Yy =1
r2 =X
X =1
ri =
Ir1 == r2 ==0

12



memory inconsistency on x86

x=y=20

thread 1 thread 2
X = 13 y = 13
ri=1y; r2 = X;

outcomes on my desktop (100M trials)

r1=0 | r2=0 3914 (00.003%)
r1=0|r2=1 50196062 (50.196%)
r1=1|r2=0 49798135 (49.798%)
=1 r2=1 1889 (00.001%)




X86’s omission

stores can be reordered after loads to different
addresses

..but thread always sees its own writes immediately
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inconsistency causes

in the interprocessor network (not possible with bus)
in the processor

out-of-order execution of reads and/or writes

write buffering (don't wait for invalidates)
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out-of-order read/write

track dependencies between loads and stores
don’t move loads across stores to same address
don’t move stores across stores to same address

with one CPU — provides sequential consistency
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load bypassing

pending load
0x5678

stores before load

pending stores

address value

0x1234 not computed
0x2345 OxFFFED
0x4567 not computed
0x9543 0x4123

not computed

not computed
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load bypassing

pending load
0x5678

stores before load

if no conflicts,

check for conflicts

pending stores

address value

0x1234 not computed
0x2345 OxFFFED
0x4567 not computed
0x9543 0x4123

not computed [not computed

run load immediately
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load forwarding

pending load
0x5678

stores before load

pending stores

address value

0x1234 not computed
0x5678 OxFFFED
0x4567 not computed
0x9543 0x4123

not computed

not computed
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load forwarding

pending load
0x5678

check for conflicts

pending stores

stores before load |0x5678

use value from store -

address value

0x1234 not computed
OxFFFED

0x4567 not computed

0x9543 0x4123

not computed

not computed

<l
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sequentially consistent reordering

reading anytime while still shared equivalent
Modified /Exclusive l Shared
< : } > time

writing anytime while still exclusive equivalent
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sequentially consistent reordering

read early ~ commit read
(check state)

Modified /Exclusive l Shared l
- I l > time
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sequentially consistent reordering

Modified /Exclusive Shared

I 1 > time

commit write write later
(check state)
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conflicts with optimizations

write buffers — need to reserve cache blocks early

load bypassing — needs to check cache state after
stores happen

load forwarding — needs to check cache state (even
though value from buffer)
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interaction with compilers

compilers also reorder loads/stores

e.g. loop optimization for instruction scheduling

is this correct?

depends on memory model compiler presents to user
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two definitions

starting point: sequential consistency
System-centric: what reorderings can | observe?

Programmer-centric: what do | do to get sequential
consistency?
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relaxations

Relaxation W—-R | W—W | R—RW || Read Others’ | Read Own Safety net
‘ Order Order Order Write Early | Write Early
[_scoel | I [ [ v | |
IBM 370 [14] v serialization instructions
TSO [20] N v RMW
PC[13,12] N v v RMW
Cmomyl [ v [ 7 [ [/ [ RMWsTBAR |
WO [3] Vv 4 V4 + synchronization
RCsc [13,12] v v v A release, acquire, nsync,
RMW
RCpc [13, 12] \/ \/ \/ \/ \/ release, acquire, nsync,
RMW
Alpha [19] v A A A MB, WMB
RMO [21] v v v v various MEMBAR’s
PowerPC [17, 4] v N N N N SYNC
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read other’s write early

Initially X=Y=0

T1 T2 T3 T4

X=1 Y=1 ri=X r3=Y
fence fence
r2=Y r4=X

ri=1, r2=0, r3=1, r4=0 violates write atomicity

T3 reads X, post-update, before T4 receives its
update

delay reads until invalidations entirely finished

figures from Boehm, "“Foundations of the C++ Concurrency Memory Model” 24



read other’s write early

Initially X=Y=0

T1 T2 T3

X=1 ri=X r2=Y
fence fence
Y=1 r3=X

ri=1, r2=1, r3=0 violates write atomicity

delay reads until invalidations entirely finished

figures from Boehm, “Foundations of the C++ Concurrency Memory Model” 25



data-race-free

race

two operations, at least one write

not separated by synchronization operation
sequentially consistent only if no races

solution to races: add synchronization operation
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example: C++ memory model

almost data-race-free

explicit synchronization operations
library functions

compiler can do aggressive optimization in between

user's perspective: anything can happen if you don't
synchronize
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prohibited optimization (1)

x=y=0

thread 1 thread 2

if (x == 1) ++y; if (y == 1) ++x;
optimized to: optimized to:

++ys ++X;

if (x 1= 1) —y; if (y = 1) —x;

Example from: Boehm, “Threads Cannot be Implemented as a Library”, 2004.
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prohibited optimization (2)

struct { char a; char b; char c; char d; } x;
x.b =1; x.c = 2; x.d = 3;
optimized to:

struct { char a; char b; char c; char d; } x;

// pseudo—C code:
value = x.a | 0x01020300;
x = value;

Example from: Boehm, “Threads Cannot be Implemented as a Library”, 2004. 29



lock-free stack (1)

class StackNode { StackNode *next; 1int value; };
StackNode xhead;

void Push(int newValue) {
StackNodex newItem = new QueueNode;
newItem—>value = newValue;
do {
newItem—>next = head;
MEMORY_FENCE(); // 2?77
} while (!compare—and—swap(&head, newItem—>next, newItem));
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lock-free stack (2)

class StackNode { StackNode *next; 1int value; };
StackNode xhead;

int Pop() {
StackNodex removed;
do {
removed = head;
MEMORY_FENCE(); // ???
} while (!compare—and—swap(&head, removed, removed—>next));
/* missing: deallocating removed safely x/
return removed—>value;

31



wait-freedom

if you stop all other threads, one thread can always
make progress

not true with locks — no progress if thread holding
lock is stopped

good for latency?
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next time: synchronization
performance

this lock has a performance problem if contended

cache block changes ownership lots of times

class Lock {
int lockValue = 0;
void lock() {
while (!compare—and—swap(&lockValue, 0, 1)) {
// retry
}
}

void unlock() {

MEMORY _FENCE () ;
*LlockValue = 0;

s
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next time — two papers

Anderson, 1990: how to do better than spinlocks

Guiroux et al, 2016: benchmarks 27 different locks
on 35 applications
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aside: futex

Linux kernel mechanism to deschedule thread

avoids race condition where lock value changes after
unscheduling

explicit call to reschedule thread
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Homework 2 notes
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