CS6354: Memory models

To read more...

This day’s papers:
Adve and Gharachorloo, “Shared Memory Consistency Models: A Tutorial”
Boehm and Adve, “Foundations of the C++ Concurrency Memory Model”,
section 1 only

Supplementary readings:
Hennessy and Patterson, section 5.6
Sorin, Hill, and Wood. A Primer on Memory Consistency and Coherence.
Boehm, “Threads Cannot Be Implemented as a Library.”

double-checked locking

class Foo { // BROKEN code
private Helper helper = null;
public Helper getHelper() {
if (helper == null)
synchronized(this) {
if (helper == null)
helper = new Helper();
}

return helper;

}

int value;

// ...
}

double-checked locking

class Foo { // BROKEN code
private Helper helper = null;
public Helper getHelper() {
if (helper == null)
synchronized(this) {
if (helper == null)
helper = new Helper();
}

return helper;

}

int value;

// ...
}

helper.value write visible after he'lper write?

compare-and-swap

compare—and—swap (address, old, new) {
with ownership of *address in cache:
if (xaddress == old) {
*address = new;
return TRUE;
} else {
return FALSE;

}

CAS lock

Alleged lock with compare-and-swap:

class Lock {
int lockValue = 0;
void lock() {
while (!compare—and—swap(&lockValue,
0, 1)) {
// retry

}

void unlock() {
lockValue = 0;
}
b5

CAS lock: usage

Lock counterlLock;
int counter = 0;

Thread 1 Thread 2

counterLock. lock(); counterLock. lock();
counter += 1; counter += 1;
counterLock.unlock(); counterLock.unlock();

possible result: counter ==

CAS lock: broken timeline

(CPULDir/Mem | |CPU2Dir/Mem | [CPU2

i read-to-own lock
lock = 0, you own |t
lock = 1 cache

read counter

counter = 0
counter : uffer)
lock = 0i(cache read—to—owh lock
i writeback
lock = 0 lock = 0, you own it
- re'goito lock = 1:(cached)

% o i __ read counter
O"ntef i counter =0

CAS lock: broken timeline

‘CPUl Dir/Mem ‘ ‘cpuz Dir/Mem ‘ CPU2

i read-to-own lock
lock = 0, you own |t
lock = 1 cache

reaél counter

counter = 0

counter =: T(huffer)

lock = 0i(cache read—to—owh lock

S\%ﬁeback

buffer write to counter
unlock locally — no need to wait for ownership

0, yoéj own it

Yn

lock = lg(cached)
read counter

C H
O"”t@, i counter =0

CAS lock: broken timeline

(CPULDir/Mem | |CPU2Dir/Mem | [CPU2

i read-to-own lock
lock = 0, you own |t
lock = 1 cache

read counter

counter = 0
counter : uffer)
lock = 0i(cache read-to-own lock
i writeback
lock = 0 lock = 0, you own it
: e‘goifo : lock = 1:(cached)

CPU2 gets lock before counter = 1 write is complete ‘

Writing lock before counter?

write buffering — hides their latency
lock release is LlockValue = 0 — nothing special

local write could happen faster than remote

CAS lock: fixed

class Lock {

int lockValue = 0;

void lock() {
while (!compare—and—swap(&lockValue,

0, 1)) {
// retry

}
MEMORY_FENCE() ;

}
void unlock() {

MEMORY_FENCE () ;
*lockValue = 0;

}s

fences

completely complete operations before fence
includes waiting for invalidations

.. but doesn’t change order of other threads

the acquire/release model

acquire — one-way fence:

operations after acquire aren’t done earlier

release — one-way fence:

operations before release aren’t done later

10

memory inconsistency on x86

x=y=20
thread 1 thread 2
X = 1; y = 1;

ri=1y; r2 = X;

11

possible orders

Thread 1 Thread 2 Thread 1 Thread 2
X =1 X =1
Yy =1 ri =y
ri =y y =1
r2z =X r2z =X
rit ==1 r2 ==1 Ir1 == r2 ==1
Thread 1 Thread 2
Yy =1
r2 =X
X =1
ri =
Ir1 == r2 ==0

12

memory inconsistency on x86

x=y=20

thread 1 thread 2
X = 13 y = 13
ri=1y; r2 = X;

outcomes on my desktop (100M trials)

r1=0 | r2=0 3914 (00.003%)
r1=0|r2=1 50196062 (50.196%)
r1=1|r2=0 49798135 (49.798%)
=1 r2=1 1889 (00.001%)

X86’s omission

stores can be reordered after loads to different
addresses

..but thread always sees its own writes immediately

14

inconsistency causes

in the interprocessor network (not possible with bus)
in the processor

out-of-order execution of reads and/or writes

write buffering (don't wait for invalidates)

15

out-of-order read/write

track dependencies between loads and stores
don’t move loads across stores to same address
don’t move stores across stores to same address

with one CPU — provides sequential consistency

16

load bypassing

pending load
0x5678

stores before load

pending stores

address value

0x1234 not computed
0x2345 OxFFFED
0x4567 not computed
0x9543 0x4123

not computed

not computed

17

load bypassing

pending load
0x5678

stores before load

if no conflicts,

check for conflicts

pending stores

address value

0x1234 not computed
0x2345 OxFFFED
0x4567 not computed
0x9543 0x4123

not computed [not computed

run load immediately

17

load forwarding

pending load
0x5678

stores before load

pending stores

address value

0x1234 not computed
0x5678 OxFFFED
0x4567 not computed
0x9543 0x4123

not computed

not computed

18

load forwarding

pending load
0x5678

check for conflicts

pending stores

stores before load |0x5678

use value from store -

address value

0x1234 not computed
OxFFFED

0x4567 not computed

0x9543 0x4123

not computed

not computed

<l

18

sequentially consistent reordering

reading anytime while still shared equivalent
Modified /Exclusive l Shared
< : } > time

writing anytime while still exclusive equivalent

19

sequentially consistent reordering

read early ~ commit read
(check state)

Modified /Exclusive l Shared l
- I l > time

19

sequentially consistent reordering

Modified /Exclusive Shared

I 1 > time

commit write write later
(check state)

19

conflicts with optimizations

write buffers — need to reserve cache blocks early

load bypassing — needs to check cache state after
stores happen

load forwarding — needs to check cache state (even
though value from buffer)

20

interaction with compilers

compilers also reorder loads/stores

e.g. loop optimization for instruction scheduling

is this correct?

depends on memory model compiler presents to user

21

two definitions

starting point: sequential consistency
System-centric: what reorderings can | observe?

Programmer-centric: what do | do to get sequential
consistency?

22

relaxations

Relaxation W—-R | W—W | R—RW || Read Others’ | Read Own Safety net
‘ Order Order Order Write Early | Write Early
[_scoel | I [[v | |
IBM 370 [14] v serialization instructions
TSO [20] N v RMW
PC[13,12] N v v RMW
Cmomyl [v [7 [[/ [RMWsTBAR |
WO [3] Vv 4 V4 + synchronization
RCsc [13,12] v v v A release, acquire, nsync,
RMW
RCpc [13, 12] \/ \/ \/ \/ \/ release, acquire, nsync,
RMW
Alpha [19] v A A A MB, WMB
RMO [21] v v v v various MEMBAR’s
PowerPC [17, 4] v N N N N SYNC

23

read other’s write early

Initially X=Y=0

T1 T2 T3 T4

X=1 Y=1 ri=X r3=Y
fence fence
r2=Y r4=X

ri=1, r2=0, r3=1, r4=0 violates write atomicity

T3 reads X, post-update, before T4 receives its
update

delay reads until invalidations entirely finished

figures from Boehm, "“Foundations of the C++ Concurrency Memory Model” 24

read other’s write early

Initially X=Y=0

T1 T2 T3

X=1 ri=X r2=Y
fence fence
Y=1 r3=X

ri=1, r2=1, r3=0 violates write atomicity

delay reads until invalidations entirely finished

figures from Boehm, “Foundations of the C++ Concurrency Memory Model” 25

data-race-free

race

two operations, at least one write

not separated by synchronization operation
sequentially consistent only if no races

solution to races: add synchronization operation

26

example: C++ memory model

almost data-race-free

explicit synchronization operations
library functions

compiler can do aggressive optimization in between

user's perspective: anything can happen if you don't
synchronize

27

prohibited optimization (1)

x=y=0

thread 1 thread 2

if (x == 1) ++y; if (y == 1) ++x;
optimized to: optimized to:

++ys ++X;

if (x 1= 1) —y; if (y = 1) —x;

Example from: Boehm, “Threads Cannot be Implemented as a Library”, 2004.

28

prohibited optimization (2)

struct { char a; char b; char c; char d; } x;
x.b =1; x.c = 2; x.d = 3;
optimized to:

struct { char a; char b; char c; char d; } x;

// pseudo—C code:
value = x.a | 0x01020300;
x = value;

Example from: Boehm, “Threads Cannot be Implemented as a Library”, 2004. 29

lock-free stack (1)

class StackNode { StackNode *next; 1int value; };
StackNode xhead;

void Push(int newValue) {
StackNodex newItem = new QueueNode;
newItem—>value = newValue;
do {
newItem—>next = head;
MEMORY_FENCE(); // 2?77
} while (!compare—and—swap(&head, newItem—>next, newItem));

30

lock-free stack (2)

class StackNode { StackNode *next; 1int value; };
StackNode xhead;

int Pop() {
StackNodex removed;
do {
removed = head;
MEMORY_FENCE(); // ???
} while (!compare—and—swap(&head, removed, removed—>next));
/* missing: deallocating removed safely x/
return removed—>value;

31

wait-freedom

if you stop all other threads, one thread can always
make progress

not true with locks — no progress if thread holding
lock is stopped

good for latency?

32

next time: synchronization
performance

this lock has a performance problem if contended

cache block changes ownership lots of times

class Lock {
int lockValue = 0;
void lock() {
while (!compare—and—swap(&lockValue, 0, 1)) {
// retry
}
}

void unlock() {

MEMORY _FENCE () ;
*LlockValue = 0;

s
33

next time — two papers

Anderson, 1990: how to do better than spinlocks

Guiroux et al, 2016: benchmarks 27 different locks
on 35 applications

34

aside: futex

Linux kernel mechanism to deschedule thread

avoids race condition where lock value changes after
unscheduling

explicit call to reschedule thread

35

Homework 2 notes

36

