
CS6354: Memory models

1

To read more…

This day’s papers:
Adve and Gharachorloo, “Shared Memory Consistency Models: A Tutorial”
Boehm and Adve, “Foundations of the C++ Concurrency Memory Model”,
section 1 only

Supplementary readings:
Hennessy and Patterson, section 5.6
Sorin, Hill, and Wood. A Primer on Memory Consistency and Coherence.
Boehm, “Threads Cannot Be Implemented as a Library.”

1

double-checked locking

class Foo { // BROKEN code
private Helper helper = null;
public Helper getHelper() {
if (helper == null)

synchronized(this) {
if (helper == null)
helper = new Helper();

}
return helper;

}
int value;
// ...

}

helper.value write visible after helper write?

2

double-checked locking

class Foo { // BROKEN code
private Helper helper = null;
public Helper getHelper() {
if (helper == null)

synchronized(this) {
if (helper == null)
helper = new Helper();

}
return helper;

}
int value;
// ...

}

helper.value write visible after helper write?
2



compare-and-swap

compare−and−swap(address, old, new) {
with ownership of *address in cache:

if (*address == old) {
*address = new;
return TRUE;

} else {
return FALSE;

}
}

3

CAS lock

Alleged lock with compare-and-swap:
class Lock {

int lockValue = 0;
void lock() {

while (!compare−and−swap(&lockValue,
0, 1)) {

// retry
}

}

void unlock() {
lockValue = 0;

}
};

4

CAS lock: usage

Lock counterLock;
int counter = 0;

Thread 1 Thread 2
counterLock.lock();
counter += 1;
counterLock.unlock();

counterLock.lock();
counter += 1;
counterLock.unlock();

possible result: counter == 2

5

CAS lock: broken timeline
CPU1 CPU1 Dir/Mem CPU2 Dir/Mem CPU2

read-to-own lock
lock = 0, you own it

lock = 1 (cached)
read counter
counter = 0

read-to-own counter

counter = 1 (buffer)
lock = 0 (cached) read-to-own lock

writeback lock
lock = 0 lock = 0, you own it

lock = 1 (cached)
read counter
counter = 0

buffer write to counter
unlock locally — no need to wait for ownership

CPU2 gets lock before counter = 1 write is complete

6



CAS lock: broken timeline
CPU1 CPU1 Dir/Mem CPU2 Dir/Mem CPU2

read-to-own lock
lock = 0, you own it

lock = 1 (cached)
read counter
counter = 0

read-to-own counter

counter = 1 (buffer)
lock = 0 (cached) read-to-own lock

writeback lock
lock = 0 lock = 0, you own it

lock = 1 (cached)
read counter
counter = 0

buffer write to counter
unlock locally — no need to wait for ownership

CPU2 gets lock before counter = 1 write is complete

6

CAS lock: broken timeline
CPU1 CPU1 Dir/Mem CPU2 Dir/Mem CPU2

read-to-own lock
lock = 0, you own it

lock = 1 (cached)
read counter
counter = 0

read-to-own counter

counter = 1 (buffer)
lock = 0 (cached) read-to-own lock

writeback lock
lock = 0 lock = 0, you own it

lock = 1 (cached)
read counter
counter = 0

buffer write to counter
unlock locally — no need to wait for ownership

CPU2 gets lock before counter = 1 write is complete

6

Writing lock before counter?

write buffering — hides their latency

lock release is lockValue = 0 — nothing special

local write could happen faster than remote

7

CAS lock: fixed

class Lock {
int lockValue = 0;
void lock() {

while (!compare−and−swap(&lockValue,
0, 1)) {

// retry
}
MEMORY_FENCE();

}

void unlock() {
MEMORY_FENCE();
*lockValue = 0;

}
};

8



fences

completely complete operations before fence

includes waiting for invalidations

… but doesn’t change order of other threads

9

the acquire/release model

acquire — one-way fence:

operations after acquire aren’t done earlier

release — one-way fence:

operations before release aren’t done later

10

memory inconsistency on x86
x = y = 0
thread 1 thread 2
x = 1;
r1 = y;

y = 1;
r2 = x;

r1=0 r2=0 3914 (00.003%)
r1=0 r2=1 50196062 (50.196%)
r1=1 r2=0 49798135 (49.798%)
r1=1 r2=1 1889 (00.001%)

outcomes on my desktop (100M trials)

11

possible orders

x = 1
y = 1

r1 = y
r2 = x

r1 == 1 r2 == 1

x = 1
r1 = y

y = 1
r2 = x

r1 == 0 r2 == 1

y = 1
r2 = x

x = 1
r1 = y
r1 == 1 r2 == 0

Thread 1 Thread 2 Thread 1 Thread 2

Thread 1 Thread 2

12



memory inconsistency on x86
x = y = 0
thread 1 thread 2
x = 1;
r1 = y;

y = 1;
r2 = x;

r1=0 r2=0 3914 (00.003%)
r1=0 r2=1 50196062 (50.196%)
r1=1 r2=0 49798135 (49.798%)
r1=1 r2=1 1889 (00.001%)

outcomes on my desktop (100M trials)

13

X86’s omission

stores can be reordered after loads to different
addresses

…but thread always sees its own writes immediately

14

inconsistency causes

in the interprocessor network (not possible with bus)

in the processor

out-of-order execution of reads and/or writes

write buffering (don’t wait for invalidates)

15

out-of-order read/write

track dependencies between loads and stores

don’t move loads across stores to same address

don’t move stores across stores to same address

with one CPU — provides sequential consistency

16



load bypassing

address value
0x1234 not computed
0x2345 0xFFFED
0x4567 not computed
0x9543 0x4123
not computed not computed

pending stores

stores before load

0x5678
pending load

check for conflicts

if no conflicts,
run load immediately

17

load bypassing

address value
0x1234 not computed
0x2345 0xFFFED
0x4567 not computed
0x9543 0x4123
not computed not computed

pending stores

stores before load

0x5678
pending load

check for conflicts

if no conflicts,
run load immediately

17

load forwarding

address value
0x1234 not computed
0x5678 0xFFFED
0x4567 not computed
0x9543 0x4123
not computed not computed

pending stores

stores before load

0x5678
pending load

check for conflicts

use value from store

18

load forwarding

address value
0x1234 not computed
0x5678 0xFFFED
0x4567 not computed
0x9543 0x4123
not computed not computed

pending stores

stores before load

0x5678
pending load

check for conflicts

use value from store

18



sequentially consistent reordering

time
SharedModified/Exclusive

reading anytime while still shared equivalent

writing anytime while still exclusive equivalent

read early commit read
(check state)

commit write
(check state)

write later

19

sequentially consistent reordering

time
SharedModified/Exclusive

reading anytime while still shared equivalent

writing anytime while still exclusive equivalent

read early commit read
(check state)

commit write
(check state)

write later

19

sequentially consistent reordering

time
SharedModified/Exclusive

reading anytime while still shared equivalent

writing anytime while still exclusive equivalent

read early commit read
(check state)

commit write
(check state)

write later

19

conflicts with optimizations

write buffers — need to reserve cache blocks early

load bypassing — needs to check cache state after
stores happen

load forwarding — needs to check cache state (even
though value from buffer)

20



interaction with compilers

compilers also reorder loads/stores

e.g. loop optimization for instruction scheduling

is this correct?

depends on memory model compiler presents to user

21

two definitions

starting point: sequential consistency

System-centric: what reorderings can I observe?

Programmer-centric: what do I do to get sequential
consistency?

22

relaxations

23

read other’s write early

T3 reads X, post-update, before T4 receives its
update

delay reads until invalidations entirely finished

figures from Boehm, “Foundations of the C++ Concurrency Memory Model” 24



read other’s write early

delay reads until invalidations entirely finished

figures from Boehm, “Foundations of the C++ Concurrency Memory Model” 25

data-race-free

race

two operations, at least one write

not separated by synchronization operation

sequentially consistent only if no races

solution to races: add synchronization operation

26

example: C++ memory model

almost data-race-free

explicit synchronization operations
library functions

compiler can do aggressive optimization in between

user’s perspective: anything can happen if you don’t
synchronize

27

prohibited optimization (1)
x = y = 0
thread 1 thread 2

if (x == 1) ++y; if (y == 1) ++x;

optimized to: optimized to:

++y;
if (x != 1) −−y;

++x;
if (y != 1) −−x;

Example from: Boehm, “Threads Cannot be Implemented as a Library”, 2004. 28



prohibited optimization (2)

struct { char a; char b; char c; char d; } x;
...
x.b = 1; x.c = 2; x.d = 3;

optimized to:

struct { char a; char b; char c; char d; } x;
...
// pseudo−C code:
value = x.a | 0x01020300;
x = value;

Example from: Boehm, “Threads Cannot be Implemented as a Library”, 2004. 29

lock-free stack (1)

class StackNode { StackNode *next; int value; };
StackNode *head;

void Push(int newValue) {
StackNode* newItem = new QueueNode;
newItem−>value = newValue;
do {

newItem−>next = head;
MEMORY_FENCE(); // ???

} while (!compare−and−swap(&head, newItem−>next, newItem));
}

30

lock-free stack (2)

class StackNode { StackNode *next; int value; };
StackNode *head;

int Pop() {
StackNode* removed;
do {

removed = head;
MEMORY_FENCE(); // ???

} while (!compare−and−swap(&head, removed, removed−>next));
/* missing: deallocating removed safely */
return removed−>value;

}

31

wait-freedom

if you stop all other threads, one thread can always
make progress

not true with locks — no progress if thread holding
lock is stopped

good for latency?

32



next time: synchronization
performance

this lock has a performance problem if contended

cache block changes ownership lots of times
class Lock {

int lockValue = 0;
void lock() {

while (!compare−and−swap(&lockValue, 0, 1)) {
// retry

}
}

void unlock() {
MEMORY_FENCE();
*lockValue = 0;

}
};

33

next time — two papers

Anderson, 1990: how to do better than spinlocks

Guiroux et al, 2016: benchmarks 27 different locks
on 35 applications

34

aside: futex

Linux kernel mechanism to deschedule thread

avoids race condition where lock value changes after
unscheduling

explicit call to reschedule thread

35

Homework 2 notes

36


