
Locks

1

To read more…

This day’s papers:
Anderson, “The Performance of Spin Lock Alternatives for Shared-Memory
Multiprocessors”
Guiroux and Lachaize, ”Multicore Locks: The Case Is Not Closed Yet”

Supplementary readings:
Hennessy and Patterson, section 5.5
Mellor-Crummey and Scott, “Algorithms for Scalable Synchronization on
Shared-Memory Multiprocessors”
Chabbi et al, “High performance Locks for Multi-level NUMA Systems”

1

homework 2, part C

out-of-order processors really like overlapping
operations with cache accesses

e.g. arithmetic while cache miss pending

question 3: about how much does this matter here?

or: how much overlap is there?

baseline 1: how much time does the cache take?

baseline 2: how much time does program take
without cache misses?

2

some confusion from paper reviews

Guirous and Lachaize benchmarked application
throughput

macrobenchmark — application performance

e.g. runtime? database transactions per second?

not clear whether they varied this between
applications

3



weaknesses/discussion topics from
paper reviews

Anderson:
hardware solutions not evaluated — do they help?
(how) does this effect real applications?
what about relinguishing the CPU?
what about thread priorities?

Guirous and Lachaize:
so much data, so few useful conclusions
how should we actually choose??
what about the locks implementation matters??
is the interposition actually cheap??

4

Anderson hardware improvements

broadcast read — avoid double invalidations

lock bus to read for test-and-set, don’t just invalidate

5

lock-free stack (1)

class StackNode { StackNode *next; int value; };
StackNode *head;

void Push(int newValue) {
StackNode* newItem = new QueueNode;
newItem−>value = newValue;
do {

newItem−>next = head;
MEMORY_FENCE(); // ???

} while (!compare−and−swap(&head, newItem−>next, newItem));
}

6

lock-free stack (2)

class StackNode { StackNode *next; int value; };
StackNode *head;

int Pop() {
StackNode* removed;
do {

removed = head;
MEMORY_FENCE(); // ???

} while (!compare−and−swap(&head, removed, removed−>next));
/* missing: deallocating removed safely */
return removed−>value;

}

7



wait-freedom

if you stop all other threads, one thread can always
make progress

not true with locks — no progress if thread holding
lock is stopped

good for latency?

8

Linux lock-freedom

read-copy-update: Linux kernel pattern

no locking for reads

writing is slow — used for read-mostly data

complicated handling of deallocation

9

spinlocks

10

test and set: two CPUs

CPU1 CPU2 CPU3 CPU4
address value state
lock BUSY Modified

address value state
lock --- Invalid

CPU2: read-to-own lock (TestAndSet)CPU1: read-to-own lock (lock = CLEAR)

11



test and set: two CPUs

CPU1 CPU2 CPU3 CPU4
address value state
lock BUSY Invalid

address value state
lock BUSY Exclusive

CPU2: read-to-own lock (TestAndSet)

CPU1: read-to-own lock (lock = CLEAR)

11

test and set: two CPUs

CPU1 CPU2 CPU3 CPU4
address value state
lock CLEAR Modified

address value state
lock BUSY Invalid

CPU2: read-to-own lock (TestAndSet)

CPU1: read-to-own lock (lock = CLEAR)

11

test and set: two CPUs

CPU1 CPU2 CPU3 CPU4
address value state
lock CLEAR Invalid

address value state
lock Modified

CPU2: read-to-own lock (TestAndSet)

CPU1: read-to-own lock (lock = CLEAR)

11

test and set: three CPUs

CPU1 CPU2 CPU3 CPU4

address value state
lock BUSY Modified

CPU1 cache

address value state
lock --- Invalid

CPU2 cache

address value state
lock --- Invalid

CPU3 cache

CPU2: read-to-own lock (TestAndSet)CPU3: read-to-own lock (TestAndSet)CPU1: read-to-own lock (lock = CLEAR)

12



test and set: three CPUs

CPU1 CPU2 CPU3 CPU4

address value state
lock BUSY Invalid

CPU1 cache

address value state
lock BUSY Exclusive

CPU2 cache

address value state
lock --- Invalid

CPU3 cache

CPU2: read-to-own lock (TestAndSet)

CPU3: read-to-own lock (TestAndSet)CPU1: read-to-own lock (lock = CLEAR)

12

test and set: three CPUs

CPU1 CPU2 CPU3 CPU4

address value state
lock Invalid

CPU1 cache

address value state
lock BUSY Invalid

CPU2 cache

address value state
lock BUSY Exclusive

CPU3 cache

CPU2: read-to-own lock (TestAndSet)

CPU3: read-to-own lock (TestAndSet)

CPU1: read-to-own lock (lock = CLEAR)

12

test and set: three CPUs

CPU1 CPU2 CPU3 CPU4

address value state
lock Invalid

CPU1 cache

address value state
lock BUSY Exclusive

CPU2 cache

address value state
lock BUSY Invalid

CPU3 cache

CPU2: read-to-own lock (TestAndSet)

CPU3: read-to-own lock (TestAndSet)CPU1: read-to-own lock (lock = CLEAR)

12

test and set: three CPUs

CPU1 CPU2 CPU3 CPU4

address value state
lock CLEAR Modified

CPU1 cache

address value state
lock BUSY Invalid

CPU2 cache

address value state
lock BUSY Invalid

CPU3 cache

CPU2: read-to-own lock (TestAndSet)CPU3: read-to-own lock (TestAndSet)

CPU1: read-to-own lock (lock = CLEAR)

12



test and set: three CPUs

CPU1 CPU2 CPU3 CPU4

address value state
lock CLEAR

CPU1 cache

address value state
lock BUSY Modified

CPU2 cache

address value state
lock BUSY Invalid

CPU3 cache

CPU2: read-to-own lock (TestAndSet)

CPU3: read-to-own lock (TestAndSet)CPU1: read-to-own lock (lock = CLEAR)

12

test and set: three CPUs

CPU1 CPU2 CPU3 CPU4

address value state
lock CLEAR

CPU1 cache

address value state
lock Invalid

CPU2 cache

address value state
lock BUSY Exclusive

CPU3 cache

CPU2: read-to-own lock (TestAndSet)

CPU3: read-to-own lock (TestAndSet)

CPU1: read-to-own lock (lock = CLEAR)

12

test and set: contention costs

1 processors waiting: 3 invalidations

2 processors waiting: 7 to ∞ invalidations
2 to ∞ invalidations while BUSY (first time)
1 invalidation to set to CLEAR (first time)
1 invalidation to acquire lock (first waiter)
1 invalidation while BUSY (second time)
1 invalidation to set to CLEAR (second time)
1 invalidation to acquire lock (second waiter)

13

test and test-and-set

14



test and test-and-set: three CPUs

CPU1 CPU2 CPU3 CPU4

address value state
lock BUSY Modified

CPU1 cache

address value state
lock --- Invalid

CPU2 cache

address value state
lock --- Invalid

CPU3 cache

CPU2: read lock (Test)CPU2: read-to-own lock (TestAndSet)CPU2, CPU3: read lock (Test)CPU2: read lock (Test) — local operationCPU3: read lock (Test)CPU3: read-to-own lock (TestAndSet)CPU1: read-to-own lock (lock = CLEAR)

15

test and test-and-set: three CPUs

CPU1 CPU2 CPU3 CPU4

address value state
lock BUSY Owned

CPU1 cache

address value state
lock BUSY Shared

CPU2 cache

address value state
lock --- Invalid

CPU3 cache

CPU2: read lock (Test)

CPU2: read-to-own lock (TestAndSet)CPU2, CPU3: read lock (Test)CPU2: read lock (Test) — local operationCPU3: read lock (Test)CPU3: read-to-own lock (TestAndSet)CPU1: read-to-own lock (lock = CLEAR)

15

test and test-and-set: three CPUs

CPU1 CPU2 CPU3 CPU4

address value state
lock BUSY Owned

CPU1 cache

address value state
lock BUSY Shared

CPU2 cache

address value state
lock BUSY Shared

CPU3 cache

CPU2: read lock (Test)CPU2: read-to-own lock (TestAndSet)CPU2, CPU3: read lock (Test)CPU2: read lock (Test) — local operation

CPU3: read lock (Test)

CPU3: read-to-own lock (TestAndSet)CPU1: read-to-own lock (lock = CLEAR)

15

test and test-and-set: three CPUs

CPU1 CPU2 CPU3 CPU4

address value state
lock BUSY Owned

CPU1 cache

address value state
lock BUSY Shared

CPU2 cache

address value state
lock BUSY Shared

CPU3 cache

CPU2: read lock (Test)CPU2: read-to-own lock (TestAndSet)CPU2, CPU3: read lock (Test)

CPU2: read lock (Test) — local operation

CPU3: read lock (Test)CPU3: read-to-own lock (TestAndSet)CPU1: read-to-own lock (lock = CLEAR)

15



test and test-and-set: three CPUs

CPU1 CPU2 CPU3 CPU4

address value state
lock CLEAR Modified

CPU1 cache

address value state
lock BUSY Invalid

CPU2 cache

address value state
lock BUSY Invalid

CPU3 cache

CPU2: read lock (Test)CPU2: read-to-own lock (TestAndSet)CPU2, CPU3: read lock (Test)CPU2: read lock (Test) — local operationCPU3: read lock (Test)CPU3: read-to-own lock (TestAndSet)

CPU1: read-to-own lock (lock = CLEAR)

15

test and test-and-set: three CPUs

CPU1 CPU2 CPU3 CPU4

address value state
lock CLEAR Owned

CPU1 cache

address value state
lock BUSY Shared

CPU2 cache

address value state
lock CLEAR Shared

CPU3 cache

CPU2: read lock (Test)CPU2: read-to-own lock (TestAndSet)

CPU2, CPU3: read lock (Test)

CPU2: read lock (Test) — local operationCPU3: read lock (Test)CPU3: read-to-own lock (TestAndSet)CPU1: read-to-own lock (lock = CLEAR)

15

test and test-and-set: three CPUs

CPU1 CPU2 CPU3 CPU4

address value state
lock --- Invalid

CPU1 cache

address value state
lock BUSY Modified

CPU2 cache

address value state
lock CLEAR Invalid

CPU3 cache

CPU2: read lock (Test)

CPU2: read-to-own lock (TestAndSet)

CPU2, CPU3: read lock (Test)CPU2: read lock (Test) — local operationCPU3: read lock (Test)CPU3: read-to-own lock (TestAndSet)CPU1: read-to-own lock (lock = CLEAR)

15

test and test-and-set: three CPUs

CPU1 CPU2 CPU3 CPU4

address value state
lock

CPU1 cache

address value state
lock BUSY Invalid

CPU2 cache

address value state
lock BUSY Exclusive

CPU3 cache

CPU2: read lock (Test)CPU2: read-to-own lock (TestAndSet)CPU2, CPU3: read lock (Test)CPU2: read lock (Test) — local operationCPU3: read lock (Test)

CPU3: read-to-own lock (TestAndSet)

CPU1: read-to-own lock (lock = CLEAR)

15



test-and-test-and-set: contention
costs

1 processors waiting: 2 invalidations
1 invalidation to release lock (original holder)
1 invalidation to acquire lock

2 processors waiting: 5 invalidations
1 invalidation to release lock (original holder)
1 invalidation to acquire lock (first waiter)
1 invalidation to read BUSY (failed test-and-set)
1 invalidation to release lock (first waiter)
1 invalidation to acquire lock (second waiter)

16

test-and-test-and-set: contention
costs

1 processors waiting: 2 invalidations
1 invalidation to release lock (original holder)
1 invalidation to acquire lock

2 processors waiting: 5 invalidations
1 invalidation to release lock (original holder)
1 invalidation to acquire lock (first waiter)
1 invalidation to read BUSY (failed test-and-set)
1 invalidation to release lock (first waiter)
1 invalidation to acquire lock (second waiter)

16

adding delay

17

test-and-test-and-set + delay

2 processors waiting: 4 invalidations
1 invalidation to release lock (original holder)
1 invalidation to acquire lock (whoever delayed least)
1 invalidation to release lock (whoever delayed least)
1 invalidation to acquire lock (whoever delayed most)

18



choosing how much to delay

slot for each processor

dynamic — based on frequency of conflict

very related to networking work (shared bus networks
— e.g. wireless)

19

ticket-based lock

Init nextTicket := 0
currentlyServing := 0

Lock
myTicket := ReadAndIncrement(nextTicket)
while (myTicket != currentlyServing)

;
Unlock currentlyServing := currentlyServing + 1

20

ticket lock: invalidations

2 processors waiting: 5 invalidations + 5 transfers
2 invalidations to choose ticket number
2(?) transfers to read currentlyServing
1 invalidation to release lock (original holder)
2(?) transfers to read currentlyServing
1 invalidation to release lock (first waiter)
1 transfer to read currentlyServing
1 invalidation to release lock (second waiter)

21

lock fairness

variation in time to wait?

22



queue-based lock

23

queue-based lock

2 processors waiting: 4 invalidations + 2 transfers
2 invalidation to choose queue location
1 invalidation to change flag (of first waiter)
1 transfer to read changed flag (first waiter)
1 invalidation to change flag (of second waiter)
1 transfer to read changed flag (second waiter)

24

microbenchmark results

25

locks and the OS

often want to run something else instead of waiting
more than one thread per core

Linux mechanism: futex WAIT/WAKE:
WAIT — go to sleep if value in memory unchanged
WAKE — wake up anyone waiting on value

26



lock fairness

Thread
1 29964090 (30%)

Thread
2 28054597 (28%)

Thread
3 41981317 (42%)

times acquired lock (100M trials)

test-and-set lock
three threads try to acquire, release in a loop
how many times does each thread actually get lock?

27

locks and NUMA (1)

better to spin on local values

MCS lock: like queue lock, but linked list instead of
array

processor’s linked list node allocated from local
memory

28

locks and NUMA (2)

communicate locally first if multiple waiters

one lock per node (e.g. processors sharing a
directory in DASH)

acquire local lock before contending for global lock

29

delegation

run a server thread for critical operations

lock-free queue: sending functions to run to the
server

get locality for critical section

30



lock tradeoffs

uncontended performance
worse for queue/ticket-based locks

memory traffic in contention
especially from bogus invalidations
better for ticket/queue-based locks

excess delay (for backoff strategies)
waiting for no one?

fairness
better for ticket/queue-based locks

releases CPU — if more than one thread/core
31

locks 5% of best %

32

better/worse

33

depends on scale

34



next time: transactional memory

transaction user model

do_transaction {
// manipulate shared values here

}

changes happen all at once or not at all
commit or abort

implementation trick: try, detect conflicts, repeat

implemented in software or hardware

35

microbenchmarks — clear
hierarchy?

36

next time: papers

Herlihy and Moss:
primitives to implement user model
code for retry needs to be generated by compiler
takes advantage of cache states — like we did for
consistency

McKenney et al:
a critique of transactional memory as a programming
model

37


