
Locks
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To read more…

This day’s papers:
Anderson, “The Performance of Spin Lock Alternatives for Shared-Memory
Multiprocessors”
Guiroux and Lachaize, ”Multicore Locks: The Case Is Not Closed Yet”

Supplementary readings:
Hennessy and Patterson, section 5.5
Mellor-Crummey and Scott, “Algorithms for Scalable Synchronization on
Shared-Memory Multiprocessors”
Chabbi et al, “High performance Locks for Multi-level NUMA Systems”
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homework 2, part C

out-of-order processors really like overlapping
operations with cache accesses

e.g. arithmetic while cache miss pending

question 3: about how much does this matter here?

or: how much overlap is there?

baseline 1: how much time does the cache take?

baseline 2: how much time does program take
without cache misses?
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some confusion from paper reviews

Guirous and Lachaize benchmarked application
throughput

macrobenchmark — application performance

e.g. runtime? database transactions per second?

not clear whether they varied this between
applications
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weaknesses/discussion topics from
paper reviews

Anderson:
hardware solutions not evaluated — do they help?
(how) does this effect real applications?
what about relinguishing the CPU?
what about thread priorities?

Guirous and Lachaize:
so much data, so few useful conclusions
how should we actually choose??
what about the locks implementation matters??
is the interposition actually cheap??
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Anderson hardware improvements

broadcast read — avoid double invalidations

lock bus to read for test-and-set, don’t just invalidate
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lock-free stack (1)

class StackNode { StackNode *next; int value; };
StackNode *head;

void Push(int newValue) {
StackNode* newItem = new QueueNode;
newItem−>value = newValue;
do {

newItem−>next = head;
MEMORY_FENCE(); // ???

} while (!compare−and−swap(&head, newItem−>next, newItem));
}
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lock-free stack (2)

class StackNode { StackNode *next; int value; };
StackNode *head;

int Pop() {
StackNode* removed;
do {

removed = head;
MEMORY_FENCE(); // ???

} while (!compare−and−swap(&head, removed, removed−>next));
/* missing: deallocating removed safely */
return removed−>value;

}
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wait-freedom

if you stop all other threads, one thread can always
make progress

not true with locks — no progress if thread holding
lock is stopped

good for latency?
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Linux lock-freedom

read-copy-update: Linux kernel pattern

no locking for reads

writing is slow — used for read-mostly data

complicated handling of deallocation
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spinlocks
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test and set: two CPUs

CPU1 CPU2 CPU3 CPU4
address value state
lock BUSY Modified

address value state
lock --- Invalid

CPU2: read-to-own lock (TestAndSet)CPU1: read-to-own lock (lock = CLEAR)
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test and set: three CPUs

CPU1 CPU2 CPU3 CPU4

address value state
lock BUSY Modified

CPU1 cache

address value state
lock --- Invalid

CPU2 cache

address value state
lock --- Invalid

CPU3 cache

CPU2: read-to-own lock (TestAndSet)CPU3: read-to-own lock (TestAndSet)CPU1: read-to-own lock (lock = CLEAR)
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test and set: contention costs

1 processors waiting: 3 invalidations

2 processors waiting: 7 to ∞ invalidations
2 to ∞ invalidations while BUSY (first time)
1 invalidation to set to CLEAR (first time)
1 invalidation to acquire lock (first waiter)
1 invalidation while BUSY (second time)
1 invalidation to set to CLEAR (second time)
1 invalidation to acquire lock (second waiter)
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test and test-and-set
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test and test-and-set: three CPUs
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address value state
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test-and-test-and-set: contention
costs

1 processors waiting: 2 invalidations
1 invalidation to release lock (original holder)
1 invalidation to acquire lock

2 processors waiting: 5 invalidations
1 invalidation to release lock (original holder)
1 invalidation to acquire lock (first waiter)
1 invalidation to read BUSY (failed test-and-set)
1 invalidation to release lock (first waiter)
1 invalidation to acquire lock (second waiter)
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adding delay
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test-and-test-and-set + delay

2 processors waiting: 4 invalidations
1 invalidation to release lock (original holder)
1 invalidation to acquire lock (whoever delayed least)
1 invalidation to release lock (whoever delayed least)
1 invalidation to acquire lock (whoever delayed most)
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choosing how much to delay

slot for each processor

dynamic — based on frequency of conflict

very related to networking work (shared bus networks
— e.g. wireless)
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ticket-based lock

Init nextTicket := 0
currentlyServing := 0

Lock
myTicket := ReadAndIncrement(nextTicket)
while (myTicket != currentlyServing)

;
Unlock currentlyServing := currentlyServing + 1
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ticket lock: invalidations

2 processors waiting: 5 invalidations + 5 transfers
2 invalidations to choose ticket number
2(?) transfers to read currentlyServing
1 invalidation to release lock (original holder)
2(?) transfers to read currentlyServing
1 invalidation to release lock (first waiter)
1 transfer to read currentlyServing
1 invalidation to release lock (second waiter)
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lock fairness

variation in time to wait?
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queue-based lock
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queue-based lock

2 processors waiting: 4 invalidations + 2 transfers
2 invalidation to choose queue location
1 invalidation to change flag (of first waiter)
1 transfer to read changed flag (first waiter)
1 invalidation to change flag (of second waiter)
1 transfer to read changed flag (second waiter)
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microbenchmark results
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locks and the OS

often want to run something else instead of waiting
more than one thread per core

Linux mechanism: futex WAIT/WAKE:
WAIT — go to sleep if value in memory unchanged
WAKE — wake up anyone waiting on value
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lock fairness

Thread
1 29964090 (30%)

Thread
2 28054597 (28%)

Thread
3 41981317 (42%)

times acquired lock (100M trials)

test-and-set lock
three threads try to acquire, release in a loop
how many times does each thread actually get lock?
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locks and NUMA (1)

better to spin on local values

MCS lock: like queue lock, but linked list instead of
array

processor’s linked list node allocated from local
memory
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locks and NUMA (2)

communicate locally first if multiple waiters

one lock per node (e.g. processors sharing a
directory in DASH)

acquire local lock before contending for global lock
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delegation

run a server thread for critical operations

lock-free queue: sending functions to run to the
server

get locality for critical section
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lock tradeoffs

uncontended performance
worse for queue/ticket-based locks

memory traffic in contention
especially from bogus invalidations
better for ticket/queue-based locks

excess delay (for backoff strategies)
waiting for no one?

fairness
better for ticket/queue-based locks

releases CPU — if more than one thread/core
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locks 5% of best %
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better/worse
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depends on scale
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next time: transactional memory

transaction user model

do_transaction {
// manipulate shared values here

}

changes happen all at once or not at all
commit or abort

implementation trick: try, detect conflicts, repeat

implemented in software or hardware
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microbenchmarks — clear
hierarchy?
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next time: papers

Herlihy and Moss:
primitives to implement user model
code for retry needs to be generated by compiler
takes advantage of cache states — like we did for
consistency

McKenney et al:
a critique of transactional memory as a programming
model
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