
Transactional Memory

1



To read more…

This day’s papers:
Herlihy and Moss, “Transactional Memory: Architectural Support for
Lock-Free Data Structures”
McKenney et al, “Why The Grass May Not Be Greener On The Other Side:
A Comparison of Locking vs. Transactional Memory”

Supplementary readings:
extended tech report version of Herlihy and Moss: http:
//www.hpl.hp.com/techreports/Compaq-DEC/CRL-92-7.pdf
(includes more details generally, including extension to directory-based
protocols)

1

http://www.hpl.hp.com/techreports/Compaq-DEC/CRL-92-7.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/CRL-92-7.pdf


Homework 2 questions?

2



From the paper reviews

Herlihy: benchmarks seemed very biased against
locks

McKenney: where is quantitative data?

Can/How can locks and TM coexist?

Real-world implementations?

I/O, etc.

3



Herlihy benchmarks

very short critical sections

lots of contention

comparing against coarse-grained locking

didn’t test priority inversion, etc. (motivations?)

4



Locks versus Transactions

McKenney, Table 1 5



Locks versus Transactions [top]

McKenney, Table 1 (top) 6



Locks versus Transactions [bottom]

McKenney, Table 1 (bottom) 7



Transaction properties

serializable — apparently one at a time

atomic — commits or aborts, nothing in between

8



Basic Herlihey and Moss interface

LT — load value as part of transaction

ST — store value as part of transaction

COMMIT — try to make changes

Commit semantics:

caller must retry transaction if it fails

aborts instead if conflicting changes happened to
read or written values

9



Weird Herlihey and Moss operation

VALIDATE — is transaction likely to commit?

Is this necessary?

10



Extra Herlihey and Moss operations

I think these all just optimizations…

LTX — load with hint that we will write

ABORT — give up on transaction

11



the transaction cache

CPU

normal cache

address transaction tag MESI state value
1234 discard on commit Modified 100
1234 discard on abort Exclusive 101
5678 discard on commit Shared 150
5678 discard on abort Shared 150
… … … …

transaction cache bus

12



the transcation cache

Extra cache — why?
additional logic for transaction commit/abort
fully-associativive — conflicts are worse than usual

Also acts as normal cache — analogy to Jouppi’s
victim cache

… but only stores things that were part of transactions

13



transcation cache tags
Normal not part of pending transaction

Discard on Commit pre-transaction version

Discard on Abort transaction modified verison

Invalid

14



transcation cache

has transaction tags and MESI states!

during transaction — two copies of values
before and after transaction version
might have the only copy of both!

after transaction — acts like normal cache
“normal” tag represents normally cached values
also “discard on commit” if transcation cannot commit

15



TSTATUS

flag: Can we commit?

If true, COMMIT will commit transaction

If false:

LT/LTX (reads) return “arbitrary value”

ST (writes) are discarded

transaction can never commit

16



aborting a transaction

CPU1 CPU2 MEM1
address tag state
0x100 Discard on Abort Modified
0x100 Discard on Commit Exclusive
0x101 Discard on Abort Shared
0x101 Discard on Commit Shared

CPU2: read for transaction 0x100
CPU1: it’s busy!

BUSY — CPU2 aborts transaction

CPU2: read-to-own for transaction 0x101
CPU1: it’s busy!

BUSY — CPU2 aborts transaction

17



aborting a transaction

CPU1 CPU2 MEM1
address tag state
0x100 Discard on Abort Modified
0x100 Discard on Commit Exclusive
0x101 Discard on Abort Shared
0x101 Discard on Commit Shared

CPU2: read for transaction 0x100
CPU1: it’s busy!

BUSY — CPU2 aborts transaction

CPU2: read-to-own for transaction 0x101
CPU1: it’s busy!

BUSY — CPU2 aborts transaction

17



aborting a transaction

CPU1 CPU2 MEM1
address tag state
0x100 Discard on Abort Modified
0x100 Discard on Commit Exclusive
0x101 Discard on Abort Shared
0x101 Discard on Commit Shared

CPU2: read for transaction 0x100
CPU1: it’s busy!

BUSY — CPU2 aborts transaction

CPU2: read-to-own for transaction 0x101
CPU1: it’s busy!

BUSY — CPU2 aborts transaction

17



aborting a transaction (text)

bus read-for-ownership returns BUSY
other transaction LT/LTX/ST same value
other transaction might not commit

bus read (non-exclusive) returns BUSY
other transaction LTX/ST same value
other transactoin might not commit

18



VALIDATE

weird things happen during aborted transaction

VALIDATE tells us if this happened

needed to, e.g., not access invalid pointer:

19



COMMIT and ABORT

local operations

cache checks “can I commit” flag

changes tags of transaction cache entries only

20



no gaurentee of progress
Thread 1 Thread 2 Thread 3
t1 = LTX(a) t2 = LTX(b) t3 = LTX(c)
ST(b, t1)
aborts, restarts
t1 = LTX(a)

ST(c, t2)
aborts, restarts

ST(a, t3)
aborts, restarts

t2 = LTX(b) t3 = LTX(c)

21



transaction and non-transaction

“For brevity, we have chosen not to specify how
transcational and non-transactional operations
interact when applied concurrently to the same
location”

22



costs of transaction support

extra fully associative cache
alternative: extra state bits on existing cache
… but what about conflicts?
… how much extra state??

larger transcations: bigger extra cache/state

23



transaction overflow: one idea

0419480x 27

1 1 1 1 0 1 0 1 …
global mask

if 0: exception!
Exception handler:
Acquire lock for index 0x04 (or ABORT)
Record new/old value in local memory
Update value, release lock on COMMIT/ABORT
Return from exception

24



costs of transaction conflict

25



costs of transaction conflict

extra work — bus traffic reading/invalidating

extra work — time to abort

locks would delay instead

26



transaction/lock iteraction option

non-transaction reads/writes abort transaction

… if transcation is also writing/reading it

… including to locks

27



real transcations

Intel TSX (recent Intel x86 chips):
Restricted Transactional Memory (RTM)
Hardware Lock Ellision (HLE)

IBM POWER8+

IBM System z (successor to S/370 — mainframes)

28



Restricted Transactional Memory

Intel real transactional memory suppport:

XBEGIN abortDest, XEND — mark transaction

XABORT — explicit abort

jump to abortDest if aborted (no validate)

abort discards all memory and register changes

size limits, I/O? transaction may always abort

29



Intel Hardware Lock Ellision

transactions for spin-locks only

XACQUIRE, XRELEASE — mark critical section

starts transaction reading lock only

ensure conflict with anything using lock normally

if aborted — run without transaction (modify lock)

backwards compatible!

30



Intel TSX Oops

31



Other HTM implementations

generally require software fallback code using locks

common case — lock ellision

IBM POWER8 — transaction suspend/resume
allow system calls/page faults/debugging during
transaction
context switch/etc.? transaction aborts on resume
also assists software speculation

32



HTM limits

Intel Haswell
4 MB read set
22 KB write set

IBM POWER8
8 KB read set
8 KB write set

Nakaike et al, “Quantitative Comparison of Hardware Transactional Memory
for Blue Gene/Q, zEnterprise EC12, Intel Core, and POWER8”, ISCA’15 33



Next time: Cray-1 and GPUs

Cray-1 — vector processor

very wide registers

designed to optimize loops

programmable GPUs

prereq. to CUDA/etc. (next week)

designed to produce graphics

34



Graphics pipeline

part 1: list of triangles (vertices)
figure out color/lighting
adjust screen coordinates
compute depth (to hide if object is in front)

part 2: fill triangles (fragment)
compute pixels of triangle
track depth of each pixel, replace only if closer
based on settings of vertices (corners)

35



A User-Programmable Vertex
Engine

Programmable vertex manipulation only

Seperate, very limited functionality fills in pixels
called fragment operations

… but based on colors, coordinates, etc. set by code

36



On Cray-1

paper spends a time on exchange registers, etc.

old alternative to virtual memory

not important for us

37



Logistics: Homework 3 Accounts?

38


