Cray-1 and Graphics Processors

Last time — TM

modern implementations hide all side effects

speculate that there will be no conflicts

generalizing speculation

speculation — guess and check:

branch prediction
early loads

transaction mechanism is general way to support it

more opportunities:

speculate that cached file is up-to-date
check after getting reply from file server

Common questions

swizzling?7?7?

where does the Cray-1 speedup come from?
startup times?
versus loop unrolling?

what workloads?

swizzling

rearranging vectors:
[into [Z, W, Y, X]
[into [Z, Z, Z, W]

etc.

GPU : rearranging vectors

every instruction allows reordering vectors
(“swizzling”):
RO.xyzw, RO.yyyy, RO.wzyXx, ..

every instruction allows write masks:
MUL RO.x, R1l, R2 — throw away Rl.y * R2.y, etc.

scalar operations — produce vector with multiple
copies of output

Cray Block Diagram

VECTOR REGISTERS

Togrert

VECTOR|

[MEMOR!

Eomig SCALAR
ADDRESS REGISTERS congror
* O
e

| ADDRESS

INSTRUCTION BUFFERS

Cray Vector Performance

COST (CLOCK PERIODS/RESULT)
340
320
300
280
260
240
220
200
180
160 ALOG

C0S
140 SQRT
120

100 EXP

80 SCALAR’

60 VECTOR\

40

20

0 4 EXP
1 10 20 30 40 50 60 64

WUELATAD | PROATY

Cray Timing — functional unit

Functional
Register unit time
usage (clock pe-
riods)
Address function units
address add unit A 2
address multiply unit A 6
Scalar functional units
scalar add unit h) 3
scalar shift unit S 2 or 3 if double-
word shift
scalar logical unit s 1
population/leading zero count
unit h} 3

Vector functional units
vector add unit 1% 3

Cray Timing — actual

Execution time in clock periods per result for various simple DO loops of the form
DO10I=1N
10 A(I) = B(l)

1000
Loop Body N=1 10 100 1000 Scalar
1. A(l) = 1. 41.0 5.5 2.6 2.5 225
2. Al = B() 44.0 58 2.7 25 31.0
3. A() = B(D + 10. 55.0 6.9 2.9 2.6 37.0
4. A = BIH + CU) 59.0 8.2 3.9 3.7 41.0
S. A(l) = B(I)*10. 56.0 7.0 2.9 2.6 38.0
6. A(l) = B(h*C() 60.0 8.3 4.0 3.7 42.0
7. A(D = B(H/10. 94.0 10.8 4.1 3.7 52.0
8. A(l) = BU)/CD) 89.0 13.3 7.6 7.2 60.0
9. A(l) = SIN(B(!)) 462.0 61.0 333 314 198.1
10. A(f) = ASIN(B(])) 430.0 2095 189.5 188.3 169.1
11. A(f) = ABS(B(I) 61.0 7.5 2.9 2.6
12. A(l) = AMAX1(B(l), C(I)) 80.0 11.2 5.2 4.8
C(ly = A(I)
13. {A(l) = B(l)} 90.0 1227 6.3 5.8 47.0
B(l) = CCI

14. A(D = B(NH*CH + DIN*E(D 110.0 16.0 77 71 57.0

10

chaining

add

V3 :=V1 x V2
V0 :=V1 + V3

mult

f

Vi[e], Vv2[0]

Vi[1i], V2[1]

Vi[2], V2[2]

vector register file

11

chaining

V3 :=V1 x V2
VO :=V1 + V3
]
add
A
VI[0] V1[0] + V2[0]
Vi[1] V1i[1l] + V2[1]
Y Y

mult

f

Vi[e], Vv2[0]

Vi[1i], V2[1]

Vi[2], V2[2]

vector register file

11

chaining timing

7-cycle multiply latency, 6-cycle add latency,
64-element vector:

7 64 I6I 64

Unchained I I T { Total = 141
MULV ADDV
|7 64 :
I |
Chained MULV
6 64
i | Total =77

ADDV

Hennessy and Patterson, Figure G.8

12

start-up overhead

time to first result
7+ 6 cycles in the chaining example

register read + functional unit latency

13

start-up overhead

time to first result
7+ 6 cycles in the chaining example
register read + functional unit latency

hidden with pipelining?

needs logic to overlap non-chained operations

13

doing multiple operations at once

A[91 ([B[9]
a(8]| |B(8)
aA[71 [B(T)
A[6]] |B[6]
A[5]] |B[5])
A[4] E

(a)

| st acn o)
TR b
+ S+ N+ N+

Element group

Hennessy and Patterson, Figure 4.4

14

lanes — spreading out vectors

Lane 0 Lane 1 Lane 2 Lane 3
g ‘4)
FP add FP add FP add FP add
pipe 0 pipe 1 pipe 2 pipe 3
Vector Vector Vector Vector
registers: registers: registers: registers:
elements elements elements elements
0,4,8,... 1,5,9,... 2,6,10, ... 3,7, 11,...
FP mul. FP mul. FP mul. FP mul.
pipe 0 pipe 1 pipe 2 pipe 3
. J
Vector load-store unit

Hennessy and Patterson, Figure 4.5

15

diving up an array

Value of | 0 1 2 3 - - n/MVL
Range of i 0 m (m+MVL) (m+2xMVL) ... - (n-MVL)
(m=1) (m-1) (m-1) (m-1) (n-1)

+MVL +2xMVL +3xMVL

Hennessy and Patterson, Figure 4.6]_6

Vector length registers

Cray 1: vector register holds up to 64 values
VL — vector length register
indicates how many of 64 values are used

remaining elements unchanged

17

Dealing with branches

do nothing

vector mask register

18

Cray-1 Vector Merge

Vector Mask = [1, 1,1, 0, 0, 1, 1]

V3 = Merge(V1, V2):
V3[i] = V1[i] if Mask[] ==
V3[i] = V2[i] otherwise

19

Cray-1 Vector merge example

2. Suppose that a 147 instruction is to be executed and the following

register conditions exist:

(VL) = 4

(vM) = 0 600000 D000 0000 0000 0OOOQ

(Element 0) of V2 = 1 (Element 0) of V3
(Element 1) of V2 = 2 (Element 1) of V3
(Element 2) of V3 = 3 (Element 2) of V3
(Element 3) of V4 = 4 (Element 3) of V3

Instruction 147123 is executed and following execution, the
elements of V1 contain the following values:
(Element 0) of V1 = -1
(Element 1) of V1
(Element 2) of V1
(Element 3) of V1 = -4
The remaining elements of V1 are unaltered.

-1
-2
-3
-4

first four

Cray-1 Hardware Reference Manual 20

Setting Vector Masks

Cray-1 has two options:

load integer register into vector mask

set based on vector register, bit ¢ is 1 if element i of
register is:

ZEro

nonzero

negative

positive

21

GPU branching

SLT V3, V1, V2 (Set Less Than):
V3[i] = 1.0 if V1[i] < V2[]
V3[i] = 0.0 otherwise

example: R3 = MIN(R1, R2)

SLT R4, R1, R2
MUL R4, R1, R4
SGE R5, R1, R2
MUL R5, R2, R5
ADD R3, R5, R4

Cray Branching

VA
/*
VM
VA
V3
VA

V3 = MIN(V1, V2) */
pseudo—assembly */

<— LESS—-THAN(V1l, V2)

WVM[x] = 1 if V1[x] < V2[x] */
<— MERGE(V1, V2)

V3[x] = V1[x] if VM[x] = 1 */

23

Memory banks

want parallelism from loads/stores

trick: interleave memory

Bank 0
Word 0,
4, 8, ..

Bank 1
Word 1,
509, ..

Bank 2
Word 2,
6, 10, ..

Bank 3
Word 3,
7,11, ..

24

Multiple banks: timeline

Bank
Cycle no. 0 1 2 3 4 5 6 7

a 136
1 Busy 144
2 Busy Busy 152
3 Busy Busy Busy 160
4 Busy Busy Busy Busy 168
5 Busy Busy Busy Busy Busy 176
¥ Busy Busy Busy Busy Busy 184
T 192 Busy Busy Busy Busy Busy
8 Busy 200 Busy Busy Busy Busy
9 Busy Busy 208 Busy Busy Busy
10 Busy Busy Busy 216 Busy Busy
11 Busy Busy Busy Busy 224 Busy
12 Busy Busy Busy Busy Busy 232

25

Cray-1 loading vectors

1769 xk Transmit (VL) words from memory to Vi elements
starting at memory address (Ag) and incrementing
by (Ak) for successive addresses

load instruction

V1[0] = memory[AO0]

V1[1] = memory[AO + Ak]
V1[2] = memory[AO + 2*AK]

26

Strides

a matrix (logically):
Ao Ao Aoz Ags
A An A A
Az Ao Az Ax

27

Strides

typical memory layout:

0: Ago

1: App

g ﬁgi a matrix (logically):
4: Ay Agy Aot Az Aps
5 Au A An A A
? 4 Az An Az Ag
8:

27

Strides

typical memory layout:

0: Ago

1: App

g ﬁgi a matrix (logically):
4: Ay Agy Aot Az Aps
5 Au A An A A
? 4 Az An Az Ag
8:

access column Q0 — stride 4

Vector loads/stores

bad strides create bank conflicts

latency of memory may be visible

28

GPU: sources of parallelism

MUL RO.xyzw, R1l.xywz, R2.xywz

1 instruction, four multiplies:
RO.x = R1.x x R2.x
RO.y = Rl.y x R2.y

hardware multithreading

like Tera machine — fixed latency makes simple
round-robin between threads

similar effect to chaining (since same program, no
branches)

29

Cray-1-style machines: parallelism

convoys/chaining — overlap consecutive instructions

overlap fetch/setup with computation:
second element fetched while first computing

first can't overlap — “start-up time”

30

Vector versus Qut-of-Order

both ways of making efficient use of functional units

ideal: every functional unit used every cycle
forward values as soon as they are ready

vector: much less complexity for processor

faster?
more space for functional units/registers?
multiple lanes instead of wider/slower register files?

31

GPU: specialization

limited input and output and memory
special instructions for lighting computations

(almost) no integer operations

32

GPU and the CPU

CPU

A

Y

GPU

33

GPU and the CPU

CPU

same bus used for memory?

A

Y

GPU

33

communicating with the GPU (1)

typical CPU interface — talk to memory bus

GPU (and/or its controller) listens to memory
reads/writes

write to memory special memory location — sends
command

memory locations often called “registers”
(even if they aren't really registers)

34

communicating with the GPU (2)

DMA — direct memory access

CPU: write values to memory (e.g. list of vertices)
CPU: send command to GPU with memory address
GPU: read values (e.g. list of vertices) from memory

CPU: do other computation while GPU is reading
from memory

35

