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To read more…

This day’s papers:
Lee et al, ”Debunking the 100X GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU”
Lee et al, ”Exploring the Design Space of SPMD Divergence Management
on Data-Parallel Architectures”

Supplementary readings:
Volokv and Demmel, ”Benchmarking GPUs to Tune Dense Linear Algebra”
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gem5 out-of-order CPU stages

Fetch

Decode

Rename Instr
Queue Issue Exec. WB

Reorder
Buffer

Commit

Load
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in-order
front-end

in-order commit

reordering happens here
(take instrs when operands ready)

reordering
undone here

(commit in order)

memory ordering
happens here
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overlap possible: execute

Int ALU

FP ALU

Int Mult/Div

FP Mult/Div

Memory

from issue to writeback

BUSY

Still usable!

Available
instructions?
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overlap possiblities

R4 ⇐ memory[10000]
…

Load Queue
R5 ⇐ R4 + R3
R6 ⇐ R2 - R4
R7 ⇐ R4 * R0
R8 ⇐ R4 * R0
R9 ⇐ R4 / R1
…

Instr Queue

R5 ⇐ R2 + R3
R6 ⇐ R2 - R5
R7 ⇐ R3 * R0
R8 ⇐ R3 * R0
R9 ⇐ R3 / R1
…
R34 ⇐ R4 / R33

Instr Queue
R4 ⇐ memory[10000]
…

Load Queue

everything
needs R4

nothing
needs R4
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identifying overlap

active cache misses

0 50 100 150 200 250 300 350 400
clock cycle

active other work

overall
miss

latency

ops/cycle
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model one: “perfect” overlap
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model two: no overlap

active cache misses

0 50 100 150 200 250 300 350 400
clock cycle

active other work

overall
miss

latency

overlap ≈ 0
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huge cache and no overlap

eliminate all cache misses
with larger cache

active cache misses

0 50 100 150 200 250 300 350 400
finish if no overlap

ops/cycle if no overlap

clock cycle

active other work

no overlap:
∆time =

miss latency
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actual results

eliminate all cache misses
with larger cache

active cache misses

0 50 100 150 200 250 300 350 400
finish if no overlap actual finish

clock cycle

active other work
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guessed timeline

with cache misses

0 50 100 150 200 250 300 350 400
finish if no overlap

clock cycle

without cache misses

cache miss latency

∆ time
(big cache)
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caveats

uneven rate of work — what is 10%?
of operations?
of execute latencies?
of time without memory delays?

branch mispredictions, etc. changes

not all cache misses eliminated
still have compulsory misses
significant for this very short program
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multiple overlapping

R4 ⇐ memory[0x10000]
R5 ⇐ memory[0xFA233]
R6 ⇐ memory[0x10004]
R8 ⇐ memory[0x10008]
…

Load Queue

set valid tag data valid tag data

00 0 1 0x23
M[0x23000]

to
M[0x2300F]

01 1 0x43
M[0x43010]

to
M[0x4301F]

1 0x23
M[0x23010]

to
M[0x2301F]

…

cache (2-ways, 16B blocks, 256 sets)

miss for 0x10000 brings in block!later accesses to block now hit!
if started after 0x10000 done

12



multiple overlapping

R4 ⇐ memory[0x10000]
R5 ⇐ memory[0xFA233]
R6 ⇐ memory[0x10004]
R8 ⇐ memory[0x10008]
…

Load Queue

set valid tag data valid tag data

00 1 0x00
M[0x10000]

to
M[0x1000F]

1 0x23
M[0x23000]

to
M[0x2300F]

01 1 0x43
M[0x43010]

to
M[0x4301F]

1 0x23
M[0x23010]

to
M[0x2301F]

…

cache (2-ways, 16B blocks, 256 sets)

miss for 0x10000 brings in block!

later accesses to block now hit!
if started after 0x10000 done

12



multiple overlapping

R4 ⇐ memory[0x10000]
R5 ⇐ memory[0xFA233]
R6 ⇐ memory[0x10004]
R8 ⇐ memory[0x10008]
…

Load Queue

set valid tag data valid tag data

00 1 0x00
M[0x10000]

to
M[0x1000F]

1 0x23
M[0x23000]

to
M[0x2300F]

01 1 0x43
M[0x43010]

to
M[0x4301F]

1 0x23
M[0x23010]

to
M[0x2301F]

…

cache (2-ways, 16B blocks, 256 sets)

miss for 0x10000 brings in block!

later accesses to block now hit!
if started after 0x10000 done

12



latency counting

overlapping accesses to same block
two misses
lower average latency — access already started

counted twice — latency for each access
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detecting branch mispredict

Fetch

Decode

Rename Instr
Queue Issue Exec. WB

Reorder
Buffer

Commit

Load
Queue

Store
Queue Physical

Register
File

branch
predicted here

prediction checked here

branch delay
delay varies — dependencies?
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acting on branch mispredict

Fetch

Decode

Rename Instr
Queue Issue Exec. WB

Reorder
Buffer

Commit

Load
Queue

Store
Queue Physical

Register
File

misprediction found here

signal to squash
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what is squashing

fetch — cancel requests to instruction cache

decode, rename — discard queued instructions

issue — clean up instruction/load/store queues
instruction finished rename, but not writeback

commit — clean up ROB entries
instruction finished rename

16



misprediction in misprediction

Y = Z = 0
X <− Y * Z
IF X > 0

GOTO L1
W <− X + Y

L1:
IF Y > 0

GOTO L2
A <− B + C

L2:
F <− D + E

fetch/rename branch FU mult FU
X <− Y + Z — —
IF X > 0 … — X <− Y * Z (1/3)
IF Y > 0 … — X <− Y * Z (2/3)
F <− D + E Y > 0 X <− Y * Z (3/3)
A <− B + C X > 0 —
W <− X + Y — —

mispredict X > 0mispredict Y > 0
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costs of branch misprediction

time spent running work that can’t commit
(instead of work from the correct branch)
time spent squashing instructions

cache pollution from mispredicted loads
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estimating branch prediction
cost/benefit

total cost ≈ portion of instructions run in incorrect
branch

assumption: same amount as would be in correct
branch

probably not true — e.g. loop versus after loop

benefit: # correct predictions × cost per
misprediction
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the execute stage

Int ALU (x6)

FP ALU (x4)

Int Mult/Div (x2)

FP Mult/Div (x2)

Memory (x4)

from issue to writeback
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pipelined FP ALU

Part 1 Part 2

Part 1 Part 2

Part 1 Part 2

Part 1 Part 2

from issue to writeback

latency = 2

4 per cycle
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variable speed functional units

FP_MultDiv
input

ready for
next input?

output

have output?

op type output in… ready in …
FloatMult 4 cycles (latency) 1 cycle (pipelined)
FloatDiv 12 cycles (latency) 12 cycles (not pipelined)
FloatSqrt 24 cycles (latency) 24 cycles (not pipelined)
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maximum speed of execute (1)

consider a program with one million FP_ALU ops

… and nothing else

4 FP_ALU functional units

1 000 000÷ 4 = 250 000 cycles

4 ops per cycle
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maximum speed of execute (2)

consider a program with one million FP_ALU ops

… and one thousand IntALU ops

250 000 cycles to issue FP_ALU ops

1000 IntALU ops need d1000÷ 6e = 167 cycles

total time = 250 000 cycles (not 250 167)

4.004 ops/cycle
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determining maximum speed

issue rate for each functional unit?
pipelined — count per cycle
not pipelined — count per latency cycles
mixed — depends ratio of instruction types

which functional unit is the bottleneck

keep instruction ratio constant
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actual issue rates — Matmul

0 2 4 6 8

8
10
12
14
16

# ops issued

%
cy
cle

s

all widths 8

0 2 4 6 8

20

40

# ops issued

%
cy
cle

s

all widths 4
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widths and branch prediction

wider pipeline — more of mispredicted branches
completed

bad for queens
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SPMD comments

prediction versus predication

does this result really matter?

what is the actual HW cost of HW divergence
management?
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SPMD: Predication

vector instructions that operate based on a mask

the mask is called a “predicate”

e.g.
if (mask[i]) { vresult[i] = va[i] + vb[i] }

paper’s notation:
@vresult add vresult, va, vb

not prediction
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Easy speedup

write some really inefficient code for platform X

spend lots of time optimizing for platform Y

platform Y is 100x faster than platform X!
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Easy speedup

write some really inefficient code for platform XCPUs

spend lots of time optimizing for platform YGPUs

platform Y isGPUs are 100x faster than platform
XCPUs!
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CPU optimization techniques

Multithreading — use multiple cores
(Yes, really, people didn’t do this when comparing…)

Cache blocking (Goto paper)
Plan what is in the cache
Split problem into cache-sized units

Reordering data
CPUs have vector support, but most be contiguous
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GPU optimization techniques

Avoid synchronization

Corollary: do lots of work with one kernel call

Make use of shared buffer
Explicitly managed cache
Replacement for cache blocking
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Floating Point BW

paper’s CPU: 102 GFlop/sec
3.2 GHz × 4 cores × 4 SIMD lanes × 2 FP op/cycle

paper’s GPU: 934 GFlop/sec.
with fused multiply-add, special functional unit

Intel Core i7-6700: 435 GFlop/sec
with fused-multiply-add

NVidia Tesla P100: 9300 GFlop/sec

33



Memory BW

paper’s CPU: 32 GB/sec? (to normal DRAM)

paper’s GPU: 141 GB/sec (to off-chip, on-GPU
memory)

paper’s GPU: 8 GB/sec to/from CPU memory
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On-chip storage

paper’s CPU: approx. 6KB registers + 8MB caches
(12KB registers with SMT)

paper’s GPU: approx. 2MB registers + 480KB
shared memory + 232KB caches

NVidia Tesla P100: approx. 14 MB registers + 3MB
shared memory/cache + 512KB caches
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The stride challenge

struct Color { float red; float green; float blue; };

Color colors[N];
...
for (int i = 0; i < N; ++i) {

colors[i].red *= 0.8;
}

needs strided memory access

Intel has vector instructions, but not this kind of
load/store
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AoS versus SoA

// Array of Structures
struct Color { float red; float green; float blue; };
Color colors[N];
...
colors[i].red *= 0.8

// Structure of Array
struct Colors {

float reds[N];
float greens[N];
float blues[N];

};
Colors colors;
...
colors.reds[i] *= 0.8
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honest performance comparisons

sometimes — fundamental limits
peak floating point operations
memory bandwidth + minimal communication

often research doesn’t know how to optimize on
“other” platform

lots of subtle tuning
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CPU SIMD support

Modern CPUs support vector operations

Generally less flexible than GPUs

Still many, many less ALUs/chip than GPUs
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x86 SIMD timeline (1)

Intel MMX (1997 Pentium)
64-bit registers, vector 32/16/8-bit integer instructions
‘saturating’ add/subtract (overflow yields MAX_INT)
64-bit loads/stores (contiguous only)

AMD 3DNow! (1998 AMD K6-2)
64-bit registers, vector 32-bit float instructions

Intel SSE/SSE2 (1999 Pentium III; 2001 Pentium 4)
128-bit registers
vector 32/64-bit float instructions
vector 32/16/8-bit integer instructions
128-bit loads/stores (contiguous only)
vector ‘shuffling’ instructions
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x86 SIMD timeline (2)

Intel SSE3/SSE4
Intel AVX (2011 Sandy Bridge)

256-bit registers
floating point only

Intel AVX2 (2013 Haswell)
256-bit registers
fused multiply-add
adds integer instructions

Intel AVX-512 (2015 Knights Landing)
512-bit registers (maybe)
scatter/gather instructions
vector mask/predication support
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horizontal instructions

// Horizontal ADD Packed Double
// %xmm1, %xmm2 are vectors of two
// 64−bit floating point values
haddpd %xmm1, %xmm2
// XMM2[0] <− XMM1[0] + XMM1[1]
// XMM2[1] <− XMM2[0] + XMM2[1]
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predicate notation

@vf0 vx = vy

// same as:

forall i: if (vf0[i]) vx[i] ← vx[j]
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Predicated instructions

// forall i:
// vf0[i] ← (va[i] < vb[i])
vf0 = vslt va, vb

// forall i:
// if (vf0[i])
// vc[i] ← vop1[i]

@vf0 vc = vop1

// forall i:
// if (!vf0[i])
// vc[i] ← vop2[i]

!@vf0 vc = vop2
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Skipping + predication

vf0 = vslt va, vb
s0 = vpopcnt vf0
// if all vf0[i] == 0:
// goto else
branch.eqz s0, else

@vf0 vc = vop1
s1 = vpopcnt !vf0
// if all vf0[i] == 1:
// goto out
branch.eqz s1, out

else:
!@vf0 vc = vop2
out:
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Predicated instructions: hardware
skipping

vf0 = vslt va, vb
push.stack out
tbranch.eqz vf0, else
vc = vop1
pop.stack

else:
vc = vop2
pop.stack

out:
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divergence stack
push.stack out
tbranch.eqz vf0, else
vc = vop1
pop.stack

else:
vc = vop2
pop.stack

out:

state: thread mask, divergence stack

Case 1: both taken

PC thread mask
else (not vf0) and startMask
out startMask
… …

divergence stack

tbranch: push else+mask, set mask, goto vop1
(set mask using vf0
normal next instruction)

pop: set mask, goto else
(PC, mask taken from stack)
pop: reset mask, got out
(PC, mask taken from stack)

Case 2: only else

PC thread mask
out originalMask
… …

divergence stack

tbranch: just goto else
(set mask using vf0)
pop: reset mask, got out
(PC, mask taken from stack)
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software divergence management

do everything using predication

compiler must track multiple mask registers

more instructions unless compiler predicts branch

(less if it does)
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trickiness in software divergence

loops: mask of un-exited CUDA thread

loop actually executed maximum iterations times
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results
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paper’s future work

more compiler improvements

branch if any instruction

profile-guided optimization
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next time: FPGAs

this topic: vector accelerators

next two lectures — more accelerators

FPGAs — reconfigurable hardware

“configuration” not “instructions”

later: fully custom chips
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