
Warehouse-Scale Computers

1

datacenter pictures

Google Council Bluffs, Iowa datacenter 2

datacenter pictures: servers racks

Facebook datacenter, Prineville, Oregon; via OregonLive 3

datacenter pictures: servers

image: Open Compute Project (proposed 2016) 4

datacenter pictures: cooling

Sasser, “A Look at Data Center Cooling Technologies” 5

Mechanical Penthouse

Air mixing section - Return air / out side air /

filter corridor

Evaporative cooling / humidification corridor

Facebook/Open Compute Project slide 6

Data Suite

 Hot aisle

containment –

ductless return

 Cold aisle

pressurization –

ductless supply

Facebook/Open Compute Project slide 7

datacenter pictures: backup power

Facebook datacenter, Prineville, Oregon; via TechCrunch 8

datacenter pictures: battery room

image: NOAA Center for Weather and Climate Prediction (at University of Maryland) 9

datacenter pictures: battery cabinet

Image: Facebook 10

datacenter pictures: TOR switch

Google “Pluto” Top-of-Rack Switch 11

datacenter sizes

tens to hundreds of megawatts

tens of thousands to hundreds of thousands of servers

12

Money, Money, Money

13

Kinds of cost

Operational:
power — e.g. cheap hydroelectric
maintainence — replacement equipment, etc.
people — sysadmins

Capital
buying/renting building + cooling + backup power
buying servers and replacing them when they become
outdated

Common metric — cost per Watt

14

Datacenter Applications

“the web”/interactive:

latency matters

reliability matters

“free” parallelism — independent (mostly) requests

“batch”:

throughput matters

use ‘spare’ capacity from interactive stuff
15

Varying demand

Urdaneta et al, “Wikipedia workload analysis for decentralized hosting” 16

Datacenter applications:
consolidation/unpredictability

0.0 0.2 0.4 0.6 0.8 1.0
time (days)

0.0

0.2

0.4

0.6

0.8

1.0 time (days)
0

0.5

1.0

po
rt

io
n

of
C

P
U

used allocated

0 5 10 15 20 25
0

0.5

1.0

po
rt

io
n

of
m

em
or

y

0 5 10 15 20 25

17

Datacenter versus Supercomputer

both purpose-built

different kinds of applications

datacenters tend to be more continuously upgraded

18

DC v SC: Goals

datacenter: focus on cost-performance

scale-out: more servers, not bigger machine
bigger individual machines are less efficient per dollar
want to use most mass-produced hardware

consolidation — run multiple applications together

more software modifications to use worse servers

19

DC v SC: Network

highly optimized datacenter network latency:

supercomputer network latency:
often less than ten microseconds round-trip

20

Datacenter Topology: historical

traditional datacenter topology:

image: Al Fares et al, “A Scalable, Commodity Data Center Network Architecture” 21

Datacenter Topology: four-post

image: Farrington and Andreyev, “Facebook’s data center network architecture” 22

Datacenter topology: Clos (1)

image: Singh et al, “Jupiter Rising: A Decade of Clos Topologies and Centralized Contorl in Google’s Datacenter Network 23

Datacenter topology: Clos (2)

image: Singh et al, “Jupiter Rising: A Decade of Clos Topologies and Centralized Contorl in Google’s Datacenter Network 24

Datacenter Topology: Clos (3)

image: Greenberg, “SDN for the Cloud” (Microsoft) 25

DC v SC: Servers

very similar!

mass-produced, usually superscalar processors

usually high-power CPUs

… but not the most expensive

26

Server Balance

want to maximally use all server resources

balance CPU, memory, storage (disk or SSD)

depends on what applications you run

27

“wimpy” servers

another proposal: cheap, low-power servers at much
higher density
going anywhere?

28

DC v SC: Storage

storage on normal servers
less networking required
computations use local (fast) storage

seperate storage racks
flat storage hierarchy, more convenient to program

29

DC v SC: Reliability

supercomputer: usually more reliable/expensive
components

supercomputer: failures — reboot it all

datacenter: expect failures

datacenter: failures — work around broken
component

30

DRAM errors

uncorrectable: approx .03% of servers per month
Meza et al, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of Trends in the field” 31

Hard Drive failures

Pinheiro et al, “Failure Trends in a Large Disk Drive Population” 32

trading for software complexity

redundancy — handle failures
means having backup copies of everything

lots of applications per server — scheduling

slower network — compute close to data

33

energy efficiency

also a problem for supercomputers, etc.

but optimized much more heavily in the datacenter
era

34

old datacenter efficieny

35

PUE

PUE — total power
IT equipment power

servers and networking equipment

modern large datacenter: < 1.2

before attention to this problem, PUEs of 2 or more
were common

36

Achieving high non-IT efficiency

airflow — don’t mix hot/cold air

increased ambient temperature

cooling efficiency
evaporative cooling
better climates

power: increased electrical effeicency, e.g.:
avoid AC/DC conversions
distributed UPS
get server power supplies that accept utility voltage

37

server efficiency

not especially well studied

similar losses from in-server power supplies, etc.

energy efficiency of components varies a lot

38

power-capping

underprovision cooling, power distribution, etc.

limit what runs on servers to stay under actual
maximum

39

power proportionality problem (1)

40

power proportionality problem (2)

41

power proportionality problem (3)

42

power-saving modes (1)

what about “sleep” modes?
save a lot of power
take milliseconds to seconds to start/end

servers need to be available continuously (e.g. stored
data)

10% utilized server might be doing some work in
every second

not enough time to really save power

43

power-saving modes (2)

processors have lower frequency/voltage modes

problem: doesn’t save power in proprtion to
performance lost

problem: things other than processors use power

44

whack-a-mole in power usage

keep finding things which keep machine from
sleeping for long times

keep finding components that use power continuously

tedious engineering problem

45

the datacenter for rent

public clouds — selling datacenter resources

e.g. Amazon Web Services

one way to deal with lower utilization

46

datacenter futures

started with: servers = desktop

trend now: beefier servers

(revisiting old ‘supercomputers’??)

47

UC Berkeley

1 Terabit/sec optical fibers
FireBox Overview!

High Radix
Switches

SoC

SoC

SoC

SoC

SoC

SoC

SoC SoC SoC

SoC

SoC

SoC

SoC

SoC

SoC

SoC

Up to 1000 SoCs +
High-BW Mem

(100,000 core total)

NVM

NVM

NVM

NVM

NVM

NVM

NVM

NVM NVM NVM

NVM

NVM

NVM

NVM

NVM

NVM

Up to 1000 NonVolatile
Memory Modules (100PB total)

Inter-‐Box	
Network	

Many	 Short	 Paths	
Thru	 High-‐Radix	 Switches	

48

datacenter futures

PCIe as a networking protocol within a rack?

fast, non-volatile RAM-like memories?

customized chips?

GPUs and FPGAs?

ASICs?

49

next time

general areas of HW security:
protect programs from each other — page tables,
kernel mode, etc.
protect programs from adversaries — bounds
checking, etc.
protect programs from people manipulating the
hardware

paper: Smith and Weingart, ”Building a
high-performance, programmable secure coprocessor”
target audience: e.g. banks want to protect PINs

even from insiders
50

public key cryptography (1)

Smith and Weingart make extensive use of digital
signatures

digital signatures use a public/private keypair

example use case: A wants to email B and have B
know A wrote the email

51

public key-cryptography (2)

A generates keypair for communicating with B

public key: given to B; serves as identity/name
assumed known by/safe to tell everyone

private key: kept secret by A
assumed no one else has private key

52

public key cryptography (3)

two mathematical functions:

signature = Sign(A’s private key, message)

correct? = Verify(A’s public key, message, signature)

Verify will only say correct if private key was used
computationally infeasible to “forge” signature

A uses Sign operation, sends message and signature

B uses Verify operation; rejects if it says “not
correct”

53

certificates

certificates are particular use of digital signature

example: A wants to help B communicate with C

certificate =
Sign(A’s private key, “C’s public key is XXX”)

certificate “proves” to B what C’s public key is
if B trusts A enough

creating a certificate called “certifying”

54

