
Warehouse-Scale Computers
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datacenter pictures

Google Council Bluffs, Iowa datacenter 2



datacenter pictures: servers racks

Facebook datacenter, Prineville, Oregon; via OregonLive 3



datacenter pictures: servers

image: Open Compute Project (proposed 2016) 4



datacenter pictures: cooling

Sasser, “A Look at Data Center Cooling Technologies” 5



Mechanical Penthouse 

Air mixing section - Return air / out side air / 

filter corridor 

Evaporative cooling / humidification corridor 

Facebook/Open Compute Project slide 6



Data Suite 

 Hot aisle 

containment – 

ductless return 

 Cold aisle 

pressurization – 

ductless supply 

Facebook/Open Compute Project slide 7



datacenter pictures: backup power

Facebook datacenter, Prineville, Oregon; via TechCrunch 8



datacenter pictures: battery room

image: NOAA Center for Weather and Climate Prediction (at University of Maryland) 9



datacenter pictures: battery cabinet

Image: Facebook 10



datacenter pictures: TOR switch

Google “Pluto” Top-of-Rack Switch 11



datacenter sizes

tens to hundreds of megawatts

tens of thousands to hundreds of thousands of servers
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Money, Money, Money
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Kinds of cost

Operational:
power — e.g. cheap hydroelectric
maintainence — replacement equipment, etc.
people — sysadmins

Capital
buying/renting building + cooling + backup power
buying servers and replacing them when they become
outdated

Common metric — cost per Watt
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Datacenter Applications

“the web”/interactive:

latency matters

reliability matters

“free” parallelism — independent (mostly) requests

“batch”:

throughput matters

use ‘spare’ capacity from interactive stuff
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Varying demand

Urdaneta et al, “Wikipedia workload analysis for decentralized hosting” 16



Datacenter applications:
consolidation/unpredictability

0.0 0.2 0.4 0.6 0.8 1.0
time (days)

0.0

0.2

0.4

0.6

0.8

1.0 time (days)
0

0.5

1.0

po
rt

io
n

of
C

P
U

used allocated

0 5 10 15 20 25
0

0.5

1.0

po
rt

io
n

of
m

em
or

y

0 5 10 15 20 25

17



Datacenter versus Supercomputer

both purpose-built

different kinds of applications

datacenters tend to be more continuously upgraded
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DC v SC: Goals

datacenter: focus on cost-performance

scale-out: more servers, not bigger machine
bigger individual machines are less efficient per dollar
want to use most mass-produced hardware

consolidation — run multiple applications together

more software modifications to use worse servers
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DC v SC: Network

highly optimized datacenter network latency:

supercomputer network latency:
often less than ten microseconds round-trip
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Datacenter Topology: historical

traditional datacenter topology:

image: Al Fares et al, “A Scalable, Commodity Data Center Network Architecture” 21



Datacenter Topology: four-post

image: Farrington and Andreyev, “Facebook’s data center network architecture” 22



Datacenter topology: Clos (1)

image: Singh et al, “Jupiter Rising: A Decade of Clos Topologies and Centralized Contorl in Google’s Datacenter Network 23



Datacenter topology: Clos (2)

image: Singh et al, “Jupiter Rising: A Decade of Clos Topologies and Centralized Contorl in Google’s Datacenter Network 24



Datacenter Topology: Clos (3)

image: Greenberg, “SDN for the Cloud” (Microsoft) 25



DC v SC: Servers

very similar!

mass-produced, usually superscalar processors

usually high-power CPUs

… but not the most expensive
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Server Balance

want to maximally use all server resources

balance CPU, memory, storage (disk or SSD)

depends on what applications you run
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“wimpy” servers

another proposal: cheap, low-power servers at much
higher density
going anywhere?
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DC v SC: Storage

storage on normal servers
less networking required
computations use local (fast) storage

seperate storage racks
flat storage hierarchy, more convenient to program
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DC v SC: Reliability

supercomputer: usually more reliable/expensive
components

supercomputer: failures — reboot it all

datacenter: expect failures

datacenter: failures — work around broken
component
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DRAM errors

uncorrectable: approx .03% of servers per month
Meza et al, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of Trends in the field” 31



Hard Drive failures

Pinheiro et al, “Failure Trends in a Large Disk Drive Population” 32



trading for software complexity

redundancy — handle failures
means having backup copies of everything

lots of applications per server — scheduling

slower network — compute close to data
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energy efficiency

also a problem for supercomputers, etc.

but optimized much more heavily in the datacenter
era
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old datacenter efficieny
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PUE

PUE — total power
IT equipment power

servers and networking equipment

modern large datacenter: < 1.2

before attention to this problem, PUEs of 2 or more
were common
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Achieving high non-IT efficiency

airflow — don’t mix hot/cold air

increased ambient temperature

cooling efficiency
evaporative cooling
better climates

power: increased electrical effeicency, e.g.:
avoid AC/DC conversions
distributed UPS
get server power supplies that accept utility voltage
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server efficiency

not especially well studied

similar losses from in-server power supplies, etc.

energy efficiency of components varies a lot
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power-capping

underprovision cooling, power distribution, etc.

limit what runs on servers to stay under actual
maximum
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power proportionality problem (1)

40



power proportionality problem (2)
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power proportionality problem (3)
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power-saving modes (1)

what about “sleep” modes?
save a lot of power
take milliseconds to seconds to start/end

servers need to be available continuously (e.g. stored
data)

10% utilized server might be doing some work in
every second

not enough time to really save power
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power-saving modes (2)

processors have lower frequency/voltage modes

problem: doesn’t save power in proprtion to
performance lost

problem: things other than processors use power
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whack-a-mole in power usage

keep finding things which keep machine from
sleeping for long times

keep finding components that use power continuously

tedious engineering problem
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the datacenter for rent

public clouds — selling datacenter resources

e.g. Amazon Web Services

one way to deal with lower utilization
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datacenter futures

started with: servers = desktop

trend now: beefier servers

(revisiting old ‘supercomputers’??)
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datacenter futures

PCIe as a networking protocol within a rack?

fast, non-volatile RAM-like memories?

customized chips?

GPUs and FPGAs?

ASICs?
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next time

general areas of HW security:
protect programs from each other — page tables,
kernel mode, etc.
protect programs from adversaries — bounds
checking, etc.
protect programs from people manipulating the
hardware

paper: Smith and Weingart, ”Building a
high-performance, programmable secure coprocessor”
target audience: e.g. banks want to protect PINs

even from insiders
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public key cryptography (1)

Smith and Weingart make extensive use of digital
signatures

digital signatures use a public/private keypair

example use case: A wants to email B and have B
know A wrote the email
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public key-cryptography (2)

A generates keypair for communicating with B

public key: given to B; serves as identity/name
assumed known by/safe to tell everyone

private key: kept secret by A
assumed no one else has private key
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public key cryptography (3)

two mathematical functions:

signature = Sign(A’s private key, message)

correct? = Verify(A’s public key, message, signature)

Verify will only say correct if private key was used
computationally infeasible to “forge” signature

A uses Sign operation, sends message and signature

B uses Verify operation; rejects if it says “not
correct”
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certificates

certificates are particular use of digital signature

example: A wants to help B communicate with C

certificate =
Sign(A’s private key, “C’s public key is XXX”)

certificate “proves” to B what C’s public key is
if B trusts A enough

creating a certificate called “certifying”
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