
Security

1



To read more…

This day’s papers:
Smith and Weingart, “‘Building a high-performance, programmable secure
coprocessor”, 1998, Sections 1-6, 10

Supplementary reading:
Anderson, Security Engineering, Chapter 16.
http://www.cl.cam.ac.uk/~rja14/book.html
Costan and Devadas, Intel SGX Explained

1

http://www.cl.cam.ac.uk/~rja14/book.html


hardware security categories

protection of software from software (page tables,
kernel mode)

secondary topic of the paper for today

aid in producing vulnerability free code (bounds
checking, no-execute bit)

protect code from people with access to hardware
primary topic of the paper for today

2



hardware security categories

protection of software from software (page tables,
kernel mode)

secondary topic of the paper for today

aid in producing vulnerability free code (bounds
checking, no-execute bit)

protect code from people with access to hardware
primary topic of the paper for today

2



major comments on the paper

use cases for secure coprocessors?

performance loss?

3



some secure coprocessor use cases

authentication tokens

certificate authorities

banking

usual goal: confidence private key isn’t stolen

if device lost — plan to switch to new one

4



protection: dual-mode operation

kernel mode — operating systems runs with extra
privileges

privileged instructions require kernel mode

kernel mode entered only using OS-controlled code

example privileged instructions:
set page table
disable interrupts
configure I/O device

5



multiple protection levels

a lot of hardware supports multiple protection levels

lower level/outer ring — strictly more access

e.g. x86:
system management mode (“ring -2”)
hypervisor mode (“ring -1”)
ring 0 (“kernel mode”)
ring 1
ring 2
ring 3 (“user mode”)

6



emulating multiple levels

program

‘guest’ OS

virtual machine monitor

hardware

conceptual layering

user
mode

kernel
mode

system call
(to kernel mode)

run handler
set page table

to user mode

run handler

7



emulating multiple levels

program

‘guest’ OS

virtual machine monitor

hardware

conceptual layering

user
mode

kernel
mode

system call
(to kernel mode)

run handler
set page table

to user mode

run handler

7



emulating multiple levels

program

‘guest’ OS

virtual machine monitor

hardware

conceptual layering

user
mode

kernel
mode

system call
(to kernel mode)

run handler
set page table

to user mode

run handler

7



recall: page tables

0x12345678
program (virtual) address

0x00044678
real (physical) address

page table lookup

virtual
page #

physical
page # permissions

00000 (invalid) none

00001 00434 read/exec

00002 00454 read/write

00003 00042 read/write
… … …

12344 00145 read/execute

12345 00149 read/execute

12346 00151 read/execute
… … …

page table

8



recall: hierarchical page tables

CR3

3239404748555663 08162431 15 723

...
...

4K
 m

em
or

y 
pa

ge

Linear address:

64 bit PD
entry

...
...

page directory

...
...

PDP
entry

page-directory-
pointer table

64 bit PT
entry

...
...

page table

...
...

PML4
entry

PML4 table
99

40*

9 9 12

sign extended

*) 40 bits aligned to a 4-KByte boundary

Diagram: Wikimedia / RokerHRO 9



tagged architectures

key trick: seperate pointer instructions
otherwise pointer tag becomes 0

Figure from Carter et al, “Hardware Support for Fast Capability-Based Addressing” 10



hardware ratchets

11



hardware ratchets: code loading

12



hardware security categories

protection of software from software (page tables,
kernel mode)

secondary topic of the paper for today

aid in producing vulnerability free code (bounds
checking, no-execute bit)

protect code from people with access to hardware
primary topic of the paper for today

13



hardware-assisted bounds checking

“page table” for array bounds

pointer passed “bounds-check” instruction

14



hardware-assisted bounds checking

“page table” for array bounds

pointer passed “bounds-check” instruction

14



hardware-assisted bounds checking

“page table” for array bounds

pointer passed “bounds-check” instruction

14



other hardware assistence (1)

write XOR execute
memory can only be writable or executable, not both
makes buffer overflows hardware (not impossible)

trap on access to user-accessible memory in kernel
mode

Intel name: “Supervisor Mode Access Pervention”
operating system disables when intentionally accessing
user data
prevents accidental use of user pointers by OS

15



hardware security categories

protection of software from software (page tables,
kernel mode)

secondary topic of the paper for today

aid in producing vulnerability free code (bounds
checking, no-execute bit)

protect code from people with access to hardware
primary topic of the paper for today

16



tamper ____

tamper evidence

tamper resistence

tamper detection

tamper response

17



tamper ____

tamper evidence

tamper resistence

tamper detection

tamper response

17



tamper-evidence

Appel, “Security Seals on Voting Machines: A Case Study” 18



tamper ____

tamper evidence

tamper resistence

tamper detection

tamper response

19



tamper-resistence/evidence

2nd image: HexView “Inside YubiKey Neo” http://www.hexview.com/~scl/neo/ 20

http://www.hexview.com/~scl/neo/


tamper ____

tamper evidence

tamper resistence

tamper detection

tamper response

21



tamper-detection

add sensor to detect tampering

e.g. checksum of code

e.g. switch if case is opened

22



tamper ____

tamper evidence

tamper resistence

tamper detection

tamper response

23



tamper-response

tamper-detection erase data!
disable machine!

24



secure co-processor protection goals

device has secret data

tampering must not reveal secrets

tampering must not let new software access secrets

25



kinds of “tampering”

replacing software

accessing the memory with another device

physically manipulating the device

26



kinds of “tampering”

replacing software

accessing the memory with another device

physically manipulating the device

26



securing the software

basic idea: load new software = erase old secrets

27



supporting software upgrades

verify with cryptography!

28



public key cryptography (1)

Smith and Weingart make extensive use of digital
signatures

digital signatures use a public/private keypair

example use case: A wants to email B and have B
know A wrote the email

29



public key-cryptography (2)

A generates keypair for communicating with B

public key: given to B; serves as identity/name
assumed known by/safe to tell everyone

private key: kept secret by A
assumed no one else has private key

30



public key cryptography (3)

two mathematical functions:

signature = Sign(A’s private key, message)

correct? = Verify(A’s public key, message, signature)

Verify will only say correct if private key was used
computationally infeasible to “forge” signature

A uses Sign operation, sends message and signature

B uses Verify operation; rejects if it says “not
correct”

31



cryptographic software update

application is loaded with public key

updates to application must include
Sign(private key, the code)

if not, secrets are wiped on update

32



signature chain

33



verifying signature chain

You get:

Sign(factoryprivkey, “Device PubKey 1 is a device key”)

Sign(deviceprivkey1, “Device PubKey 2 is a device key”)
Sign(deviceprivkey2, “I generated this output”)

need to check all signatures in the chain

can be used for application updates/messages
chain is device to OS to application

34



enforcing updates zeroing

checks signatures
zeroes data

35



kinds of “tampering”

replacing software

accessing the memory with another device

physically manipulating the device

36



secure(?) packaging

Figure from Ross Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems 37



secure(?) packaging

Figure from Ross Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems 38



power analysis

Messerges et al, “Investigations of Power Analysis Attacks on Smartcards” 39



memory permanence

values can be “burned” into some memories

even RAMs that “go away” when they lose power

40



IBM’s solution

circuitry to “buffer” power to processor
limit information available from power consumption

active SRAM erasing circuitry
cannot just cut power and hope

move values in SRAM to avoid “burning” them in

41



kinds of “tampering”

replacing software

accessing the memory with another device

physically manipulating the device

42



ways to make devices do weird
things

all these can break CPU operation, or SRAM zeroing:

temperature

ionizing radiation

changing voltages

changing clock signals

… probably lots more

43



IBM’s way of dealing with weirdness

sensors:

temperature sensor

radiation sensor

voltage sensor

phase-locked loops to sync clocks

44



focused ion beam (on a smart card)

Kommerling and Kuhn, “Design Principles for Tamper-Resistant Smartcard Processors” 45



attestation

attestation — know what code is running

mechanism

private key loaded at factory

loading code (miniboot) signs message saying:
what application it loaded
the public part of a keypair it generated

this message is a certificate for the application

46



attestation — verifying

application signs “yes, I really computed X” using its
private key

anyone can verify this with miniboot’s certificate

47



attestation use case — public cloud

I run a VM on Amazon

How can I verify Amazon is really running my code?

How can I keep Amazon from getting my data?

48



attestation use case — public cloud

I run a VM on Amazon

How can I verify Amazon is really running my code?

How can I keep Amazon from getting my data?

48



attestation use case — public cloud

I run a VM on Amazon

How can I verify Amazon is really running my code?

How can I keep Amazon from getting my data?

48



cryptography assumption

known public keys for signatures can setup encrypted
communication

… even in the presence of insecure networks

49



Secure Enclaves and SGX

Intel CPU extension called “SGX”

“Secure Enclaves”

provides isolated execution and remote attestation

50



trusted computing

Costan and Devadas, “Intel SGX Explained” 51



SGX isolation

run on same CPU as potentially malicious OS

CPU must enforce protections

OS gives memory to enclave

CPU prevents OS from accessing enclave memory
modification to pagetable lookup
memory encryption/authentication

effectively CPU microcode has mini-OS

52



SGX paging

OS can’t control memory??

SGX can ask for pages to be removed from enclave
memory

memory is encrypted before being released to OS

53



SGX and physical attacks

SGX includes memory encryption

processor encrypts data that goes off-chip

also uses a message authentication code to detect
tampering with data in memory

54



SGX and side-channel attacks

SGX doesn’t protect against side-channels

how long does computation take?

cache timing — like in the Bernstein paper (much
earlier in semester?)

OS/HW owner can do a lot to observe system
much more than scenario in Bernstein

55



SGX and physical attacks

hope — physically reading key is hard
very small process size
hard to use key

56



observing cache behavior

normally, it’s hard to
isolate OS behavior
from effects of other
things on the caches,
but the OS can fix that

Costan and Devadas, “Intel SGX Explained” 57



other side-channel tricks

OS can get make every enclave access page fault
full page-level memory access pattern

OS can run on other hyperthread!
sometimes with shared branch predictors

OS can make interrupts happen all the time

is this a security problem?

58



research areas in HW security

hardware verification
what if I don’t trust Intel?
what if I don’t trust my outsourced fab?

running sensitive code efficiently on same HW

support for OS security
with low overhead
easy to verify correctness

efficient side-channel resistence

59


