
Exam Review 1

1



exam length

approx. 75 minutes
approx. 3 minutes for less-than-sentence answer
1-2 minutes for multiple choice/true false
5 minutes for long answer/calculation

hope to get room until 7pm

2



exam format

short answer questions
less than one sentence answers

multiple choice/true/false
a lot about CPU design techniques

a few longer questions
write (pseudo)code
one-to-two sentence explanation

3



exam focus

will not ask “what was done in paper X”

focus on conceptual questions
not definitions

few “what will ROB/CPU/CC/etc.” do questions
should all be generic enough to not require memorizing
CPU

code to read/write in generic assembly or C

4



most requested topics

out-of-order:
reorder buffers/precise exceptions
reg. renaming/reservation stations/instr. queues

cache coherency

vector instructions

5



Recall: gem5 pipeline

Fetch

Decode

Rename Instr
Queue Issue Exec. WB

Reorder
Buffer

Commit

Load
Queue

Store
Queue Physical

Register
File

register renaming queues

6



Recall: gem5 pipeline

Fetch

Decode

Rename Instr
Queue Issue Exec. WB

Reorder
Buffer

Commit

Load
Queue

Store
Queue Physical

Register
File

register renaming queues

7



renaming motivation: false conflicts

R3 ← R1 + R2 // A
R2 ← R2 + 4 // B
R4 ← M[R2] // C
reg init.

value

ABC
or-
der

BAC
or-
der

R1 1 1 1
R2 2 6 6
R3 0 3 7
R4 0 M[6]M[6]

better to compute B earlier (start load faster)
no real dependency between A and B

8



renaming motivation: false conflicts

R3 ← R1 + R2 // A
R2 ← R2 + 4 // B
R4 ← M[R2] // C
reg init.

value

ABC
or-
der

BAC
or-
der

R1 1 1 1
R2 2 6 6
R3 0 3 7
R4 0 M[6]M[6]

better to compute B earlier (start load faster)
no real dependency between A and B

8



renaming example

R3 ← R1 + R2 // A
R2 ← R2 + 4 // B
R4 ← M[R2] // C

X3 ← X1 + X2 // A
X8 ← X2 + 4 // B
X12 ← M[X8] // C

logi-
cal

phys-
ical

R1 X1
R2 X2
R3 X31
R4 X23

rename map (initial)

initial free list:
X3, X8, X12,
X15, X21

rename map (final)

final free list:
X15, X21

9



renaming data structures

current name map
update oninstruction rename

name map for exceptions
update on instruction commit

free list
remove from on instruction rename
add to on instruction commit

10



a code example

Loop: R3 ← M[R0]
R1 ← M[R3]
R1 ← R1 + 1
R4 ← R3 − R2
M[R3] ← R1
IF R4 != 0 GOTO Loop

adapted from H&P Fig 3.54 11



exercise: rename this

R3 ← M[R0]
R1 ← M[R3]
R1 ← R1 + 1
R4 ← R3 − R2
M[R3] ← R1
IF R4 != 0 GOTO Loop
// branch predicted:
R3 ← M[R0]
R1 ← M[R3]

initial map:
R0→X0
R1→X1
R2→X2
R3→X3
R4→X4

initial free list:
X5, X6, X7, X8,
X9, X10, X11

adapted from H&P Fig 3.54 12



exercise: rename this (answer)

X5 ← M[X0]
X6 ← M[X5]
X7 ← X6 + 1
X8 ← X5 − X2
M[X6] ← X7
IF X8 != 0 GOTO Loop
// branch predicted:
X9 ← M[X0]
X10 ← M[R3]

renamed
R3 ← M[R0]
R1 ← M[R3]
R1 ← R1 + 1
R4 ← R3 − R2
M[R3] ← R1
IF R4 != 0 GOTO Loop
// branch predicted:
R3 ← M[R0]
R1 ← M[R3]

original
final map:
R0→X0
R1→X7
R2→X5
R3→X9
R4→X8

final free list:
X11

adapted from H&P Fig 3.54 13



exercise: reorder buffer contents

X5 ← M[X0] // A
X6 ← M[X5] // B
X7 ← X1 + 1 // C
X8 ← X6 − X5 // D
M[X6] ← X7 // E
IF X8 != 0 GOTO Loop // F
// branch predicted:
X9 ← M[X0] // A
X10 ← M[R3] // B

renamed

R3 ← M[R0]
R1 ← M[R3]
R1 ← R1 + 1
R4 ← R3 − R2
M[R3] ← R1
IF R4 != 0 GOTO Loop
// branch predicted:
R3 ← M[R0]
R1 ← M[R3]

original

PC log. reg
prev.
phys. store? except? ready?

A R3 X3 no none no
B R1 X1 no none no
C R1 X6 no none no
D R4 X4 no none no
E --- --- yes none no
F --- --- no none no
A R3 X5 no none no
B R1 X6 no none no

adapted from H&P Fig 3.54 14



exercise: reorder buffer contents

X5 ← M[X0] // A
X6 ← M[X5] // B
X7 ← X1 + 1 // C
X8 ← X6 − X5 // D
M[X6] ← X7 // E
IF X8 != 0 GOTO Loop // F
// branch predicted:
X9 ← M[X0] // A
X10 ← M[R3] // B

renamed

R3 ← M[R0]
R1 ← M[R3]
R1 ← R1 + 1
R4 ← R3 − R2
M[R3] ← R1
IF R4 != 0 GOTO Loop
// branch predicted:
R3 ← M[R0]
R1 ← M[R3]

original

PC log. reg
prev.
phys. store? except? ready?

A R3 X3 no none no
B R1 X1 no none no
C R1 X6 no none no
D R4 X4 no none no
E --- --- yes none no
F --- --- no none no
A R3 X5 no none no
B R1 X6 no none no

adapted from H&P Fig 3.54 14



exercise: commit stage actions?

X5 ← M[X0] // A
X6 ← M[X5] // B
X7 ← X6 + 1 // C
X8 ← X5 − X2 // D
M[X6] ← X7 // E
IF X8 != 0 GOTO Loop // F
// branch predicted:
X9 ← M[X0] // A
X10 ← M[X9] // B
X11 ← X10 + 1 // C
X12 ← X10 − X2 // D

renamed

PC log. reg
prev.
phys. store? except? ready?

A R3 X3 no none yes tail
B R1 X1 no none yes
C R1 X6 no none no
D R4 X4 no none yes
E --- --- yes none no
F --- --- no none no
A R3 X5 no none yes
B R1 X7 no fault yes
C R1 X10 no none no
D R4 X8 no none yes head

is exception dispatched? what commit action to take?

adapted from H&P Fig 3.54 15



exercise: commit stage actions?

log. phys.
R0 X0
R1 X1
R2 X11
R3 X9
R4 X12

rename map
(for next rename)

free list:
X11, X3

PC log. reg
prev.
phys. store? except? ready?

A R3 X3 no none yes
B R1 X1 no none yes tail
C R1 X6 no none yes
D R4 X4 no none yes
E --- --- yes none yes
F --- --- no none yes
A R3 X5 no none yes
B R1 X7 no fault yes
C R1 X10 no none no
D R4 X8 no none yes head

exercise: result of processing rest?
code adapted from H&P Fig 3.54 16



exercise: commit stage actions?

log. phys.
R0 X0
R1 X11
R2 X2
R3 X9
R4 X12

rename map
(for next rename)

free list:
X11, X3, X1,
X6, X4, X5

PC log. reg
prev.
phys. store? except? ready?

A R3 X3 no none yes
B R1 X1 no none yes
C R1 X6 no none yes
D R4 X4 no none yes
E --- --- yes none yes
F --- --- no none yes
A R3 X5 no none yes
B R1 X7 no fault yes tail
C R1 X10 no none no
D R4 X8 no none yes head

exercise: result of processing rest?
code adapted from H&P Fig 3.54 17



exercise: commit stage actions?

log. phys.
R0 X0
R1 X11
R2 X2
R3 X9
R4 X12 X8

rename map
(for next rename)

free list:
X11, X3, X1,
X6, X4, X5,
X12,

PC log. reg
prev.
phys. store? except? ready?

A R3 X3 no none yes
B R1 X1 no none yes
C R1 X6 no none yes
D R4 X4 no none yes
E --- --- yes none yes
F --- --- no none yes
A R3 X5 no none yes head
B R1 X7 no fault yes tail
C R1 X10 no none no head
D R4 X8 no none yes

exercise: result of processing rest?
code adapted from H&P Fig 3.54 18



exercise: commit stage actions?

log. phys.
R0 X0
R1 X11 X10
R2 X2
R3 X9
R4 X12 X8

rename map
(for next rename)

free list:
X11, X3, X1,
X6, X4, X5,
X12, X11,

PC log. reg
prev.
phys. store? except? ready?

A R3 X3 no none yes
B R1 X1 no none yes
C R1 X6 no none yes
D R4 X4 no none yes
E --- --- yes none yes
F --- --- no none yes
A R3 X5 no none yes head
B R1 X7 no fault yes tail,

head
C R1 X10 no none no head
D R4 X8 no none yes

exercise: result of processing rest?
code adapted from H&P Fig 3.54 18



exercise: commit stage actions?

log. phys.
R0 X0
R1 X11 X10 X7
R2 X2
R3 X9
R4 X12 X8

rename map
(for next rename)

free list:
X11, X3, X1,
X6, X4, X5,
X12, X11, X10

PC log. reg
prev.
phys. store? except? ready?

A R3 X3 no none yes
B R1 X1 no none yes
C R1 X6 no none yes
D R4 X4 no none yes
E --- --- yes none yes
F --- --- no none yes
A R3 X5 no none yes head
B R1 X7 no fault yes tail
C R1 X10 no none no head
D R4 X8 no none yes

exercise: result of processing rest?
code adapted from H&P Fig 3.54 18



ROB exception processing

MIPS R10000 method:

ROB has old mapping

forwards: add to free list until exception

backwards: update mapping until/including
exception

19



alternate ROB organization

can store current physical register instead of previous

commit stage maintains separate name map

20



Recall: gem5 pipeline

Fetch

Decode

Rename Instr
Queue Issue Exec. WB

Reorder
Buffer

Commit

Load
Queue

Store
Queue Physical

Register
File

register renaming queues

21



instruction queue
busy list:
X5, X6, X7, X8, X9, X10

X5 ← M[X0]
X6 ← M[X5]
X7 ← X1 + 1
X8 ← X6 − X5
IF X8 != 0 GOTO Loop
X9 ← M[X0]

instr. queue

can’t start instructions with busy inputscan start these (requirements not busy)
(how many? depends on available functional units)

X5 no longer busy — check queue for matches

22



instruction queue
busy list:
X5, X6, X7, X8, X9, X10

X5 ← M[X0]
X6 ← M[X5]
X7 ← X1 + 1
X8 ← X6 − X5
IF X8 != 0 GOTO Loop
X9 ← M[X0]

instr. queue

can’t start instructions with busy inputscan start these (requirements not busy)
(how many? depends on available functional units)

X5 no longer busy — check queue for matches

22



instruction queue
busy list:
X5, X6, X7, X8, X9, X10

X5 ← M[X0]
X6 ← M[X5]
X7 ← X1 + 1
X8 ← X6 − X5
IF X8 != 0 GOTO Loop
X9 ← M[X0]

instr. queue

can’t start instructions with busy inputscan start these (requirements not busy)
(how many? depends on available functional units)

X5 no longer busy — check queue for matches

22



instruction queue
busy list:
X5, X6, X7, X8, X9, X10

X5 ← M[X0]
X6 ← M[X5]
X7 ← X1 + 1
X8 ← X6 − X5
IF X8 != 0 GOTO Loop
X9 ← M[X0]

instr. queue

can’t start instructions with busy inputscan start these (requirements not busy)
(how many? depends on available functional units)

X5 no longer busy — check queue for matches

22



Recall: MOESI
Modified value is different than memory and

I am the only one who has it

Owned value is different than memory and
I must update memory

Exclusive value is same as memory and I am
the only one who has it

Shared value is same as memory or cache
in Owned state

Invalid I don’t have the value 23



cache coherency exercise

Modified/Exclusive/Owned/Shared/Invalid
invalidation-based protocol
read from remote caches or memory
action CPU1 CPU2 CPU3 CPU4
--- I I I I
1: read
1: write
2: write
3: read
1: read
2: evict
3: write
3: read

24



cache coherency exercise

Modified/Exclusive/Owned/Shared/Invalid
invalidation-based protocol
read from remote caches or memory
action CPU1 CPU2 CPU3 CPU4 notes
--- I I I I
1: read
1: write
2: write
3: read
1: read
2: evict
3: write
3: read

25



cache coherency exercise

Modified/Exclusive/Owned/Shared/Invalid
invalidation-based protocol
read from remote caches or memory
action CPU1 CPU2 CPU3 CPU4 notes
--- I I I I
1: read E I I I read from memory
1: write
2: write
3: read
1: read
2: evict
3: write
3: read

25



cache coherency exercise

Modified/Exclusive/Owned/Shared/Invalid
invalidation-based protocol
read from remote caches or memory
action CPU1 CPU2 CPU3 CPU4 notes
--- I I I I
1: read E I I I read from memory
1: write M I I I entirely local
2: write
3: read
1: read
2: evict
3: write
3: read

25



cache coherency exercise

Modified/Exclusive/Owned/Shared/Invalid
invalidation-based protocol
read from remote caches or memory
action CPU1 CPU2 CPU3 CPU4 notes
--- I I I I
1: read E I I I read from memory
1: write M I I I entirely local
2: write I M I I send invalidate
3: read
1: read
2: evict
3: write
3: read

25



cache coherency exercise

Modified/Exclusive/Owned/Shared/Invalid
invalidation-based protocol
read from remote caches or memory
action CPU1 CPU2 CPU3 CPU4 notes
--- I I I I
1: read E I I I read from memory
1: write M I I I entirely local
2: write I M I I send invalidate
3: read I O S I 3 reads from 2
1: read
2: evict
3: write
3: read

25



cache coherency exercise

Modified/Exclusive/Owned/Shared/Invalid
invalidation-based protocol
read from remote caches or memory
action CPU1 CPU2 CPU3 CPU4 notes
--- I I I I
1: read E I I I read from memory
1: write M I I I entirely local
2: write I M I I send invalidate
3: read I O S I 3 reads from 2
1: read S O S I 1 reads from 2
2: evict
3: write
3: read

25



cache coherency exercise

Modified/Exclusive/Owned/Shared/Invalid
invalidation-based protocol
read from remote caches or memory
action CPU1 CPU2 CPU3 CPU4 notes
--- I I I I
1: read E I I I read from memory
1: write M I I I entirely local
2: write I M I I send invalidate
3: read I O S I 3 reads from 2
1: read S O S I 1 reads from 2
2: evict S I S I 2 writes to memory
3: write
3: read

25



cache coherency exercise

Modified/Exclusive/Owned/Shared/Invalid
invalidation-based protocol
read from remote caches or memory
action CPU1 CPU2 CPU3 CPU4 notes
--- I I I I
1: read E I I I read from memory
1: write M I I I entirely local
2: write I M I I send invalidate
3: read I O S I 3 reads from 2
1: read S O S I 1 reads from 2
2: evict S I S I 2 writes to memory
3: write I I M I send invalidate
3: read

25



cache coherency exercise

Modified/Exclusive/Owned/Shared/Invalid
invalidation-based protocol
read from remote caches or memory
action CPU1 CPU2 CPU3 CPU4 notes
--- I I I I
1: read E I I I read from memory
1: write M I I I entirely local
2: write I M I I send invalidate
3: read I O S I 3 reads from 2
1: read S O S I 1 reads from 2
2: evict S I S I 2 writes to memory
3: write I I M I send invalidate
3: read I I M I entirely local

25



directory states

Remote-Invalid — not stored elsewhere

Remote-Dirty — stored elsewhere and exclusive

Remote-Shared — possibly stored elsewhere

plus list of stored locations

26



directory-based coherency

Remote-Invalid, Remote-Dirty, Remote-Shared
action CPU1 CPU2 CPU3 CPU4 dirctory at 1
--- I I I I
1: read E I I I
1: write M I I I
2: write I M I I
3: read I S S I
1: read S S S I
2: evict S I S I
3: write I I M I
3: read I I M I

27



directory-based coherency

Remote-Invalid, Remote-Dirty, Remote-Shared
action CPU1 CPU2 CPU3 CPU4 dirctory at 1
--- I I I I
1: read E I I I R-I
1: write M I I I
2: write I M I I
3: read I S S I
1: read S S S I
2: evict S I S I
3: write I I M I
3: read I I M I

27



directory-based coherency

Remote-Invalid, Remote-Dirty, Remote-Shared
action CPU1 CPU2 CPU3 CPU4 dirctory at 1
--- I I I I
1: read E I I I R-I
1: write M I I I R-I
2: write I M I I
3: read I S S I
1: read S S S I
2: evict S I S I
3: write I I M I
3: read I I M I

27



directory-based coherency

Remote-Invalid, Remote-Dirty, Remote-Shared
action CPU1 CPU2 CPU3 CPU4 dirctory at 1
--- I I I I
1: read E I I I R-I
1: write M I I I R-I
2: write I M I I R-D 2
3: read I S S I
1: read S S S I
2: evict S I S I
3: write I I M I
3: read I I M I

27



directory-based coherency

Remote-Invalid, Remote-Dirty, Remote-Shared
action CPU1 CPU2 CPU3 CPU4 dirctory at 1
--- I I I I
1: read E I I I R-I
1: write M I I I R-I
2: write I M I I R-D 2
3: read I S S I R-S 23
1: read S S S I
2: evict S I S I
3: write I I M I
3: read I I M I

27



directory-based coherency

Remote-Invalid, Remote-Dirty, Remote-Shared
action CPU1 CPU2 CPU3 CPU4 dirctory at 1
--- I I I I
1: read E I I I R-I
1: write M I I I R-I
2: write I M I I R-D 2
3: read I S S I R-S 23
1: read S S S I R-S 123
2: evict S I S I
3: write I I M I
3: read I I M I

27



directory-based coherency

Remote-Invalid, Remote-Dirty, Remote-Shared
action CPU1 CPU2 CPU3 CPU4 dirctory at 1
--- I I I I
1: read E I I I R-I
1: write M I I I R-I
2: write I M I I R-D 2
3: read I S S I R-S 23
1: read S S S I R-S 123
2: evict S I S I R-S 123
3: write I I M I
3: read I I M I

27



directory-based coherency

Remote-Invalid, Remote-Dirty, Remote-Shared
action CPU1 CPU2 CPU3 CPU4 dirctory at 1
--- I I I I
1: read E I I I R-I
1: write M I I I R-I
2: write I M I I R-D 2
3: read I S S I R-S 23
1: read S S S I R-S 123
2: evict S I S I R-S 123
3: write I I M I R-D 3
3: read I I M I

27



directory-based coherency

Remote-Invalid, Remote-Dirty, Remote-Shared
action CPU1 CPU2 CPU3 CPU4 dirctory at 1
--- I I I I
1: read E I I I R-I
1: write M I I I R-I
2: write I M I I R-D 2
3: read I S S I R-S 23
1: read S S S I R-S 123
2: evict S I S I R-S 123
3: write I I M I R-D 3
3: read I I M I R-D 3

27



vector exercise

void vector_add_one(int *x, int length) {
for (int i = 0; i < length; ++i) {

x[i] += 1;
}

}

exercise: write as a vector machine program with
64-element vectors

vector length register or predicate (mask) registers

28



vector exercise answer

void vector_add_one(int *x, int length) {
for (int i = 0; i < length; ++i) {

x[i] += 1;
}

}

// R1 contains X, R2 contains length
VL ← R2 MOD 64

Loop: IF R2 <= 0, goto End
V1 ← MEMORY[R1]
V1 ← V1 + 1
MEMORY[R1] ← V1
R2 ← R2 − VL
VL ← 64
goto Loop

End: 29



relaxed memory models ex 1

reasons for each reordering:
loads before loads
loads before stores
stores before stores

30



relaxed memory models ex 2

What can happen?
X = Y = 0
CPU1:
R1 ← X
R2 ← Y
Y ← 1
CPU2:
R1 ← X
X ← 1
R2 ← Y

sequential?
move loads after stores?
move loads after loads? 31



extra OH?

I could provide extra office hours this week…

Wednesday morning or afternoon

Thursday morning

32


