IMAGE ROTATION

Original
New image - clockwise rotation

Original
New image - clockwise rotation

nW

Original

Observation

- nw equals oh
- nh equals ow

New image - clockwise rotation

nw

Original

Suppose

- Dotted square is at location (nx, ny)

New image - clockwise rotation

Original
New image - clockwise rotation

Question

- How did the pixel at ($n x, n y$) get painted that way?

Original
New image - clockwise rotation

Observation

- Everything in the new image at y-coordinate ny
 can be found in the original image at x-coordinate ny.

Original

Observation

- Everything in the new image at y-coordinate ny can be found in the original image at x-coordinate $n y$.

Original

Observation

- Everything in the new image at y-coordinate ny can be found in the original image at x-coordinate ny.

Conclusion

- Knowing the y-coordinate ny of a pixel in the new image tells you the x-coordinate of the source pixel in the original image - its ny over from the lefthand side

Original

Question

- How can we determine the y-coordinate of the source pixel in the original image?

Original

Question

- How can we determine the y-coordinate of the source pixel in the original image?

Original
New image - clockwise rotation

Observation

- The distance of a pixel from the righthand side
 of the new image is how far the source pixel is from the top in the original image

Original
New image - clockwise rotation

Observation

- The distance of a pixel from the righthand side
 of the new image is how far the source pixel is from the top in the original image

Original
New image - clockwise rotation

Observation

- The distance of a pixel from the righthand side
 of the new image is how far the source pixel is from the top in the original image

Conclusion

- Knowing the y-coordinate $n x$ of a pixel in the new image tells you how to calculate the y-coordinate of the source pixel in the original image

