
CS	1112	Fall	2016	Test	3	
	

Page 1 of 9	

	

Name:	
	

E-mail	ID:	
	
	

On	my	honor,	I	pledge	that	I	have	neither	given	nor	received	help	on	this	test.	
	

Signature:	
	
	

Test	rules	and	information	
	

• Print	your	name,	id,	and	pledge	as	requested.	
	

• The	only	paper	you	can	have	in	front	of	you	during	the	exam	is	the	test	itself	(which	includes	one	scrap	
piece	of	paper),	and	one	page	of	notes.	

	

• The	only	library	allowed	to	be	imported	is	Image	for	questions	5	and	6.	There	is	no	need	to	make	use	of	
get.py	because	of	none	of	your	solutions	involve	getting	user	input	or	web	resources.	

		

• All	submissions	must	be	made	during	the	test.	No	forgotten	submissions	will	be	accepted	after	the	fact.	
	

• This	pledged	exam	is	closed	textbook.	The	only	device	you	may	access	during	the	test	is	your	own	laptop.	
	

• You	are	not	allowed	to	access	class	examples	or	your	own	past	assignments	during	the	test;	i.e.,	the	only	
Python	code	you	may	access	or	view	are	ones	that	you	develop	for	this	test.		

	

• The	only	windows	that	can	be	open	on	your	computer	are	PyCharm	and	a	single	browser	with	tabs	only	
open	to	the	class	website.	

	 	

• Code	should	compile	and	demonstrate	proper	programming	style;	e.g.,	whitespace,	identifier	naming,	etc.	
	

• None	of	the	functions	you	develop	should	print	any	output.	
	

• Each	attempted	program	that	does	not	generate	an	error	when	run	is	worth	five	points.	Each	program	
that	passes	testing	is	worth	four	additional	points.	

	

• Each	attempted	module	 that	does	not	generate	an	error	when	 its	 functions	are	 invoked	 is	worth	 five	
points.		

	

• Each	attempted	function	is	worth	four	points	except	for	functions	change()	and	report(),	which	are	worth	
six	points.	An	attempted	function	that	prints	output	is	incorrect.	The	expected	grading	rubric	is		

	

o One	point	for	attempting	the	function;		
o For	 functions	other	 than	change()	and	 report()	 there	are	 three	points	 for	getting	all	 test	cases	

correct.		
o For	functions	change()	and	report()	there	are	five	points	for	getting	all	test	cases	correct.	

	

• Our	testing	of	the	functions	will	involve	different	test	cases	than	the	ones	used	for	elaborative	purposes	
in	the	problem	descriptions.	 	

CS	1112	Fall	2016	Test	3	
	

Page 2 of 9	

	
	
1. (9	points)	Develop	a	program	q01.py.	The	program	prints	the	string	'I	pledged	to	do	my	honest	best	on	

this	test.'	and	nothing	else.	Thus,	a	program	run	should	produce	output	
	

	

I pledged to do my honest best on this test.
	

	
	

2. (9	points)	Develop	a	program	q02.py.	The	program	makes	a	single	input	request	for	four	integer	values.		
The	values	are	respectively	a,	b,	c,	and	x.	The	program	prints	the	value	of	the	equation	a‧x2	+	b‧x	+	c.	Below	
are	three	sample	runs	of	the	program.	

	
	

Enter four integers: 2 3 4 5
69
	

	
	

Enter four integers: 3 1 4 1
8
	

	
	

Enter four integers: 2 4 8 16
584
	

	
3. (11	points)	Develop	module	q03.py.	The	module	defines	a	single	function	change().			
	

• Function	change()	has	a	single	string	parameter	s.	The	function	returns	a	new	string	equal	to	s	except	
the	case	of	all	letters	is	switched	(e.g.,	'e'	becomes	'E'	and	vice-versa).	For	example,	the	following	code	
segment	

	

x = 'sAw'; y = q03.change(x); print(y)
x = 'toPS'; y = q03.change(x); print(y)
x = 'Act 1'; y = q03.change(x); print(y)

	

should	produce	output	
	

	

SaW
TOps
aCT 1
	

	
• Program	q03-tester.py	consists	of	the	preceding	code	segment.	

	
	
4. (13	points)	Develop	module	q04.py.	The	module	defines	two	functions	eval()	and	flip().	
	

• Function	eval()	has	two	parameters	d	and	v,	where	d	is	a	dict	and	v	is	of	any	type.	The	function	returns	
the	list	of	keys	in	d	whose	value	is	v.	For	example,	the	following	code	segment		

	

CS	1112	Fall	2016	Test	3	
	

Page 3 of 9	

d = { 0: 'z', 1 : 'o', 2: 'e', 3: 'o', 4: 'e', 5: 'o' }
	

ks = q04.eval(d, 'e'); print(ks)
ks = q04.eval(d, 'i'); print(ks)
ks = q04.eval(d, 'o'); print(ks)

	

should	produce	output	
	

	

[2, 4]
[]
[1, 3, 5]
	

	

• Function	flip()	has	one	parameter	d	of	type	dict.	The	function	returns	a	new	dict	id	whose	keys	are	the	
values	of	dict	d.	For	every	value	v	is	in	d.values(),	there	is	a	mapping	in	dict	id	that	maps	v	to	all	of	the	
keys	in	d	that	map	to	it.		For	example,	the	following	code	segment	

	

d = { 0: 'z', 1 : 'o', 2: 'e', 3: 'o', 4: 'e', 5: 'o' }
	

id = q04.flip(d); print(id)
	

should	produce	output	(the	order	of	your	key-value	mappings	may	be	different,	but	the	mappings	
themselves	should	be	the	same)	

	
	

{'z': [0], 'o': [1, 3, 5], 'e': [2, 4]}
	

	

Hint:	I	expect	eval()	to	be	helpful	in	building	the	return	dict	id.	
	

• Program q04-tester.py	consists	of	the	preceding	code	segments.	
	

	
5. 	(9	points)	Develop	module	q05.py.	The	module	defines	a	function	negative().			
	

• Function	negative()	has	one	parameter	drawing,	where	drawing	is	an	Image.	The	function	returns	a	
new	image	of	the	same	dimensions	as	drawing.			

	

The	pixels	in	the	new	image	are	the	color	negative	of	the	corresponding	pixels	in	drawing;	that	is,	if	
coordinate	(x,	y)	of	drawing	has	RGB	value	(r,	g,	b),	then	the	new	image	at	coordinate	(x,	y)	has	RGB	
color	(255	–	r,	255	–	g,	255	–	b).	For	example,	the	two	below	images	are	color	negatives	of	each	other.	

	

	 	
	

• Program	q05-tester.py	tests	function	negative()	and	should	produce	the	above	image	on	the	right.	
	
	

CS	1112	Fall	2016	Test	3	
	

Page 4 of 9	

6. 	(9	points)	Develop	module	q06.py.	The	module	defines	a	function	average().			
	

• Function	average()	has	one	parameter	drawing,	where	drawing	is	an	Image.	The	function	returns	a	
triple	(ar,	ag,	ab),	where	ar,	ag,	and	ab	are	respectively	the	integer	averages	of	the	red,	green,	and	
blue	components	of	the	RGB	values	for	the	pixels	 in	drawing.	Hint:	compute	the	sums	of	the	reds,	
greens,	and	blues	of	the	RGB	values	for	all	the	pixels	in	drawing	and	divide	each	sum	by	the	number	
of	pixels	in	the	drawing	(i.e.,	drawing	width	by	drawing	height).	

	

	 	
	

• Program	q06-tester.py	tests	function	average()	on	color	versions	of	the	above	two	images	and	
should	produce	output	

	

	
(96, 73, 45)
(75, 61, 42)	
	

	
	
7. (11	points)	Develop	module	q07.py.	The	module	defines	a	function	report().	
	

• Function	report()	has	three	parameters,	words,	misspellings,	and	w.		
	

o Parameter	words	is	a	list	of	correctly	spelled	words,	
o Parameter	misspellings	is	a	dataset	of	words	and	how	they	are	sometimes	misspelled.	Each	

row	in	the	dataset	is	a	list	of	strings.	The	first	string	in	the	list	is	a	correctly	spelled	word,	the	
remaining	strings	are	misspelled	variants	of	that	word.	For	example,	one	row	in	the	dataset	
could	 be	 the	 list	 ['humorous',	 'humerous',	 'humourous'];	 i.e.,	 the	 strings	 'humerous'	 and		
'humourous'	are	misspellings	of	'humorous'.	

o Parameter	w	is	a	string.	
	

The	function	report()	return	value	is	as	follows:	
	

o If	w	is	in	words,	the	function	returns	w;	
o If	 instead	w	 is	an	element	of	one	of	the	rows	of	misspellings,	the	function	returns	the	first	

element	of	that	row	(i.e.,	the	correct	spelling	of	w);	
o Otherwise,	the	function	returns	the	string	'*'	+	w	+	'*'.	

	

For	example,	the	following	code	segment	
	

WORDS_URL = 'http://www.cs1112.org/datasets/common_words.txt'
MISSPELLINGS_URL =
'http://www.cs1112.org/datasets/common_misspellings.csv'

	

common = get.strings_from_url(WORDS_URL)

CS	1112	Fall	2016	Test	3	
	

Page 5 of 9	

corrections = get.csv_sheet_from_url(MISSPELLINGS_URL)
	

s = 'mispell'; t = q07.report(common, corrections, s); print(t)
s = 'weird'; t = q07.report(common, corrections, s); print(t)
s = 'lol'; t = q07.report(common, corrections, s); print(t)

	

should	produce	output	
	

	
misspell
weird
lol
	

• Program	q07-tester.py	consists	of	the	preceding	code	segment.	
	

	
8. (25	pts)	Develop	module	q08.py	to	support	DNA	analyses	and	manipulations.		
	

A	DNA	molecule	is	a	strand	(sequence)	of	nucleotides.	The	four	types	of	nucleotides	are	adenine,	cytosine,	
guanine,	and	thymine.	Nucleotides	are	normally	represented	by	their	first	letter	in	upper	case	format;	i.e.,	
A,	C,	G,	and	T.	A	strand	is	represented	as	a	sequence	of	A’s,	C’s,	G’,	and	T’s;	e.g.,	GGAACCATGACATAG.		A	
cell	 interprets	 its	DNA	 strand	as	program	 for	what	biological	 function	 to	 carry	out.	An	 individual	DNA	
instruction	is	a	three-letter	sequence	called	a	codon.	For	DNA	strand	GGAACCATGACATAG,	the	codons	are	
GGA,	ACC,	ATG,	ACA,	and	TAG.	

	

The	module	defines	functions	length(),	canonical(),	slice(),	splice(),	and	insert().	The	functions	all	deal	with	
strands	of	nucleotides.		

	

• Function	length()	has	one	string	parameter	s,	where	s	is	a	string	of	nucleotides.	The	function	returns	
the	number	of	nucleotides	in	s.	For	example,	the	following	code	segment	

	

n = q08.length('GGAACCATGACATAG'); print(n)
	

should	produce	output	
	

	

15
	

	

• Function	 canonical()	 has	 one	 string	 parameter	 s,	 where	 s	 is	 a	 string	 of	 nucleotides.	 The	 function	
returns	a	new	upper-case	version	of	s.	For	example,	the	following	code	segment	

	

s = q08.canonical('acgTgCa'); print(s)
	

should	produce	output	
	

	

ACGTGCA
	

	

• Function	slice()	has	three	parameters	s,	a,	and	b,	where	s	is	a	string	of	nucleotides,	and	a	and	b		are	
indices	into	s.	The	function	returns	a	new	string	of	nucleotides	that	equals	the	nucleotides	of	s	starting	
with	the	nucleotide	at	index	a	and	up	to	but	not	including	the	nucleotide	at	index	b.		For	example,	the	
following	code	segment	

	

CS	1112	Fall	2016	Test	3	
	

Page 6 of 9	

s = q08.slice('GGAACCAT', 2, 5); print(s)
	

should	produce	output	
	

	

AAC
	

	

• Function	 splice()	 has	 two	 parameters	 s	 and	 t,	 where	 s	 and	 t	 are	 both	 strings	 of	 nucleotides.	 The	
function	 returns	 a	 new	 string	 of	 nucleotides	 that	 equals	 the	 nucleotides	 of	 s	 followed	 by	 the	
nucleotides	of	t.	For	example,	the	following	code	segment		

	

s = q08.splice('CAT', 'ACT'); print(s)
	

should	produce	output	
	

	

CATACT

	

• Function	insert()	has	three	parameters	s,	t,	and	a,	where	s	and	t	are	both	strings	of	nucleotides	and	a	
is	an	index.	The	function	returns	a	new	string	of	nucleotides	that	equals	the	nucleotides	of	s	starting	
with	 its	 initial	 nucleotide	 and	 up	 to	 but	 not	 including	 the	 nucleotide	 at	 index	a,	 followed	 by	 the	
nucleotides	of	t,	followed	the	remaining	nucleotides	of	s.	For	example,	the	following	code	

	

s = q08.insert('CCCGGG', 'ATTA', 3); print(s)
	

should	produce	output	
	

	

CCCATTAGGG
	

	
• Program		q08-tester.py	consists	of	the	preceding	code	segments.	

	
9. (9	pts) Develop	module	q09.py to	further	support	DNA	analysis	by	defining	function	is_legal().	
	

• Function	 is_legal()	has	one	string	parameter	s.	The	function	returns	a	Boolean	value	whether	s	 is	a	
string	of	upper-case	nucleotides.	For	example,	the	following	code	segment		

	

b = q09.is_legal('ACTGGTCA'); print(b)
b = q09.is_legal('xyz'); print(b)
b = q09.is_legal('acgtactg'); print(b)

	

should	produce	output	
	

	

True
False
False
	

	
• Program		q09-tester.py	consists	of	the	preceding	code	segment.	

	 	

CS	1112	Fall	2016	Test	3	
	

Page 7 of 9	

10. (9	points) Develop	module	q10.py	to	further	support	DNA	analysis	by	defining	a	function	codons().	
	

• Function	codons()	has	one	string	parameter	s,	where	s	is	a	string	of	nucleotides.	The	function	returns	
the	list	of	codons	(nucleotide	triplets)	making	up	s.	You	can	assume	the	length	of	s	 is	a	multiple	of	
three.	For	example,	the	following	code	segment	

	

c = q10.codons('ACGGAACCATGACATAGG')
	

print(c)
	

should	produce	output	
	

	

['ACG', 'GAA', 'CCA', 'TGA', 'CAT', 'AGG']
	

	

• Program		q10-tester.py	consists	of	the	preceding	code	segment.	
	
	
11. (21	points)	Develop	module	q11.py	 to	 support	 the	playing	of	 the	 two-person	game	sticks.	The	game	

starts	off	with	three	rows	of	sticks,	where	the	first	row	has	1	stick,	the	middle	row	has	3	sticks,	and	the	
last	row	has	5	sticks.	A	visual	representation	would	be		

|
|||

|||||
A	move	of	the	game	is	the	removal	of	one	or	two	sticks	from	a	single	row.	The	game	is	over	when	there	is	
exactly	one	stick	left	altogether	in	the	three	rows.	

	

The	module	implements	four	functions	setup(),	is_over(),	is_valid(),	and	crossoff().	
	

• Function	setup()	has	no	parameters.	The	function	returns	a	new	three-element	list	of	integers	whose	
values	are	respectively	1,	3,	and	5.	For	example,	the	following	code	segment		

	

g = q11.setup();
	

print(g)
	

should	produce	output	
	

	

[1, 3, 5]
	

	

• Function	 is_over()	 has	 one	 parameter	 sticks,	 where	 sticks	 is	 a	 list	 of	 three	 integers.	 The	 function	
returns	a	Boolean	value	whether	the	sum	of	the	sticks	elements	is	one.	For	example,	the	following	
code	segment		

	

s1 = [0, 1, 1]; b = q11.is_over(s1); print(b)
s2 = [0, 0, 3]; b = q11.is_over(s2); print(b)
s3 = [0, 1, 0]; b = q11.is_over(s3); print(b)

	

should	produce	output	
	

	

False
False
True

CS	1112	Fall	2016	Test	3	
	

Page 8 of 9	

	

• Function	is_valid()	has	three	parameters	sticks,	r,	and	n,	where	sticks	is	a	list	of	three	integers,	and	r	
and	n	are	integers.	The	function	returns	a	Boolean	value	whether	the	decrementing	row	r	of	sticks	by	
n	is	a	valid	move:		

	

o If	r	is	not	a	valid	index	into	sticks,	the	function	returns	False.	
o If	instead	n	is	not	equal	to	1	or	2,	the	function	returns	False.	
o If	instead	the	r	th	element	of	sticks	is	less	than	n,	the	function	returns	False.	
o Otherwise,	the	function	returns	True.	

	

For	example,	the	following	code	segment		

s = [0, 2, 1] ; b = q11.is_valid(s, 3, 1); print(b)
s = [0, 2, 1] ; b = q11.is_valid(s, 0, 1); print(b)
s = [0, 2, 1] ; b = q11.is_valid(s, 2, 1); print(b)
s = [0, 2, 1] ; b = q11.is_valid(s, 1, 2); print(b)
s = [0, 2, 1] ; b = q11.is_valid(s, 1, 1); print(b)
s = [0, 2, 1] ; b = q11.is_valid(s, 1, 0); print(b)

	

should	produce	output	
	

	

False
False
True
True
True
False
	 	

	

• Function	cross_off()	has	three	parameters	sticks,	r,	and	n,	where	sticks	is	a	list	of	three	integers,	and	r	
and	n	are	integers.		The	function	does	not	return	a	value	or	print	any	output.	If	decrementing	row	r	of	
sticks	by	n	 is	a	 legal	move,	 then	 that	decrementing	of	sticks	 is	performed;	otherwise,	no	action	 is	
taken.	For	example,	the	following	code	segment		

	

s = [0, 2, 1]; q11.cross_off(s, 3, 1); print(s)
s = [0, 2, 1]; q11.cross_off(s, 0, 1); print(s)
s = [0, 2, 1]; q11.cross_off(s, 2, 1); print(s)
s = [0, 2, 1]; q11.cross_off(s, 1, 2); print(s)
s = [0, 2, 1]; q11.cross_off(s, 1, 1); print(s)
s = [0, 2, 1]; q11.cross_off(s, 1, 0); print(s)

	

should	produce	output	
	

	

[0, 2, 1]
[0, 2, 1]
[0, 2, 0]
[0, 0, 1]
[0, 1, 1]
[0, 2, 1]
	

	
• Program		q11-tester.py	consists	of	the	preceding	code	segments.	

	 	

CS	1112	Fall	2016	Test	3	
	

Page 9 of 9	

Scratch

