
CS 1112 Fall 2020 Test 2 Page 1 of 4

READ THIS ENTIRE PAGE. YOU ARE RESPONSIBLE KNOWING WHAT IT SAYS.

HONOR
• By submitting solutions for this test, you are agreeing that

o You neither given nor received help directly or indirectly to or from anyone else;

o You did not directly or indirectly use materials from non-allowed sources.

IMPORTANT
• You must use our files when coding.

• The WWHAD strategy (what would a human do strategy) should serve you well.

• During the test you may not access past code or algorithms (yours, ours, or anyone else’s).

• During the test you may not access class notes, epistles, examples, artifacts, solutions on
the web, or your own past assignments during the test.

• Class personnel cannot help you debug your answers.

• All functions make use of tester module run.py.
• None of your functions should modify any list or dataset parameters.

• None of your functions should print or get input.

• Comment out or delete all debugging print() statements before submitting.

• Whether code is testable is important. Every function needs to have at least one
uncommented statement.

• None of the testing code should be modified.

• The only device you may access during the exam is your laptop. The only open windows
allowed are PyCharm and a browser with tabs linked from the class website.

• During the test you can access the course module descriptions and the course Python
information sheet.

• You are responsible for submitting for your work, so check before exiting the testing. Late
submissions will not be graded, so do not submit once your testing time is up.

• Code should follow class programming practices; e.g., whitespace, identifier naming, etc.

• Because the problems are short, commenting is not necessary.

• You might add comments if you were unable to complete a problem and want to explain
what you were attempting to do.

CS 1112 Fall 2020 Test 2 Page 2 of 4

QUESTIONS

1. Implement module line.py. The module defines a single function y(). The function has
three numeric parameters, m, x, and b.

The function returns the value of the expression m ⋅ x + b.

The built-in tester for the module should produce the following output.

y(3, 5, 7): 22
y(5, 7, 3): 38
y(7, 3, 5): 26

2. Implement module tex.py. The module defines a single function words(). The function has

a single string parameter s.

The function returns the number of words in s.

The built-in tester for the module should produce the following output.

avg("The cow mooed and mooed"): 5
avg("All things must pass"): 4
avg("I have a dream that one day"): 7

3. Implement module just.py. The module defines a single function one(). The function has

four logical (True / False) parameters w, x, y, and z.

The function returns whether exactly one of parameters w, x, y, and z is equal to True.

A list whose elements are the values of w, x, y, and z could prove helpful.

The built-in tester for the module should produce the following output.

one(True, False, False, False): True
one(False, False, True, True): False
one(False, False, True, False): True
one(False, True, False, False): True
one(False, False, False, False): False

4. Implement module check.py. The module defines a single function in_order(). The
function has a list of integers parameter x.

The function returns whether the values in x are arranged in numeric order.

The built-in tester for the module should produce the following output.

in_order([1]): True
in_order([2, 5, 4]): False
in_order([5, 6, 8, 8]): True
in_order([7, 7, 1, 7, 9]): False

CS 1112 Fall 2020 Test 2 Page 3 of 4

5. Implement module inv.py. The module defines a single function erse(). The function has

one dataset parameter d. The cell values in d are all numeric.

The function returns a new dataset. The values in the new dataset are the additive inverses
of the values in d; that is if an individual cell in d has value v, then the corresponding cell
in the new dataset has value -v.

The built-in tester makes uses of datasets d1 and d2.

d1 = [[3, 1, -4], [1, 5], [-9, -2], [-6]]
d2 = [[1], [0], [-1]]

The built-in tester for the module should produce the following output.

erse(d1): [[-3, -1, 4], [-1, -5], [9, 2], [6]]
erse(d2): [[-1], [0], [1]]

6. Implement module bit.py. The module defines a single function ter(). The function has
two integers parameter n and k.

The function returns a new list with n elements. Each element is a random value between
0 and k-1.

Your code may not make use of the random module seed() function.

The built-in tester for the module should produce the following output.

ter(5, 2): [1, 0, 1, 0, 1]
ter(8, 10): [4, 1, 4, 8, 0, 6, 1, 9]

7. Implement module sim.py. The module defines a single function metric(). The function
has one dictionary parameter d.

The function returns True or False depending whether d is a symmetric dictionary.

A dictionary is symmetric if for every mapping k to v in the dictionary, then there is also a
mapping of v to k in the dictionary.

Recommendation: Loop on the keys in d. Suppose key k maps to value v.

• If v is not d.keys(), then there is a missing mapping for dictionary d to be
symmetric.

• If instead d[v] is not equal to k, then there is a missing mapping for dictionary d
to be symmetric.

• If there are no missing mappings, d is symmetric.

The built-in tester for the module should produce the following output.

metric({1: 2, 2: 3, 3: 1}): False
metric({1: 2, 2: 1, 3: 4, 4: 3}): True
metric({1: 2, 2: 5}): False

CS 1112 Fall 2020 Test 2 Page 4 of 4

8. Implement module exc.py. The module defines a single function lusive(). The function
has two list parameter x and y.

The function returns a new list whose elements are all of the elements of x that are not in
y, followed by all of the elements of y that are not in x.

The built-in tester for the module should produce the following output.

lusive([3, 5, 9], [2, 5, 3, 5, 8, 8]): [9, 2, 8, 8]
lusive([9, 7, 3, 2], [2, 3, 7]): [9]
lusive([3], [1, 4]): [3, 1, 4]
lusive([], [1, 2, 3]): [1, 2, 3]
lusive([1, 2], [1, 2]): []

