
CS 1112 Spring 2021 Test 2

Page 1 of 4

Read this entire page. You are responsible knowing what it says.

Honor

• By submitting solutions for this test, you are agreeing that

o You neither given nor received help directly or indirectly to or from anyone else.

o You did not directly or indirectly use materials from non-allowed sources.

Important

• You must use our files when coding.

• The WWHAD strategy (what would a human do strategy) should serve you well.

• During the test you may not access past code or algorithms (yours, ours, or anyone else’s).

• During the test you may not access class notes, epistles, examples, artifacts, solutions on the
web, or your own past assignments during the test.

• None of your functions should modify any list or dataset parameters.

• None of your functions should print or get input.

• Class personnel cannot help you debug your answers.

• Comment out or delete all debugging print() statements before submitting.

• Whether code is testable is important. Every function needs to have at least one uncommented
statement.

• None of the testing code should be modified.

• The only device you may access during the exam is your laptop. The only open windows allowed
are PyCharm and a browser with tabs linked from the class website.

• During the test you can access the course module descriptions and the course Python
information sheet.

• You are responsible for submitting for your work, so check before exiting the testing. Late
submissions will not be graded, so do not submit once your testing time is up.

• Code should follow class programming practices, e.g., whitespace, identifier naming, etc.

• Because the solutions are all short, commenting is not necessary.

• You might add comments if you were unable to complete a problem and want to explain what
you were attempting to do.

CS 1112 Spring 2021 Test 2

Page 2 of 4

Problems

1. Implement module onds.py. The module defines a function sec(). The function has two integer
parameters h and m.

The function returns the total number of seconds in a time period of h hours and m minutes.
Remember there are 60 minutes in an hour and 60 seconds in a minute.

The built-in tester for the module should produce the following output.

sec(1, 0): 3600

sec(0, 1): 60

sec(23, 60): 86400

2. Implement module how.py. The module defines a function many(). The function has two string
parameters s and t.

The function returns the number of words in string s that contain string t.

The built-in tester for the module should produce the following output.

many('aaa bbb ccc ddd', 'bb'): 1

many('able was i ere i saw elba', 'a'): 4

many('bookkeeper', 'eee'): 0

3. Implement module twelve.py. The module defines a function count(). The function has one
integer parameter n.

The function should have a loop that repeats n times. Each time the loop repeats, it simulates the
rolling of two normal six-sided dice by generating two numbers from the interval 1 through 6. The
function returns the number of times, the two dice rolls sum to 12.

The built-in tester for the module should produce the following output.

count(36): 1

count(3600): 88

4. Implement module two.py. The module defines a function add(). The function has two integer list
parameters x and y. The lists have the same length.

The function returns a new list whose first element is the total of the first elements of x and y, the
second element is the total of the second elements of x and y, and so on.

CS 1112 Spring 2021 Test 2

Page 3 of 4

The built-in tester for the module should produce the following output.

add([1, 2], [3, 4]): [4, 6]

add([1, 3, 5, 7], [9, 5, 1, -3]): [10, 8, 6, 4]

add([3, 1, 4], [2, 7, 1]): [5, 8, 5]

5. Implement module tweak.py. The module defines a function cynanic(). The function has one RGB
pixel parameter opixel.

The function returns a new pixel, where

• The red component of the new pixel equals 255 minus the red component of opixel.

• The green component of the new pixel equals 0.

• The blue component of the new pixel equals 255 minus the blue component of opixel.

The built-in tester for the module should produce the following image.

6. Implement module dd.py. The module defines a single function iso(). The function has two

dictionary parameters d1 and d2.

The function returns whether the two dictionaries have the same keys.

A possible algorithm

• Check whether each of the keys in d1 is also in d2. If any are not, the function returns False.

• Check whether each of the keys in d2 is also in d1. If any are not, the function returns False.

• If no missing keys are found, the function returns True.

The built-in tester uses the following dictionaries.

 e1 = { 1: '1', '2': 200, 'c': 'iii' }
 e2 = { 1: 100, 'b': '2', 'c': 3 }

CS 1112 Spring 2021 Test 2

Page 4 of 4

 f1 = { 1: '1', '2': 2, 3: 'iii' }
 f2 = { 1: '1', '2': 2, 3: 'iii', 4: 'four' }

 g1 = { 0: 0, 1: 1, 2: 10, 3: 11, 'b': 2 }
 g2 = { 1: 1, 0: 0, 3: 3, 2: 4, 'b': 2 }

The built-in tester for the module should produce the following output.

iso(e1, e2): False

iso(f1, f2): False

iso(g1, g2): True

7. Implement module ma.py. The module defines a single function sig(). The function has one
dataset parameter d.

The function returns a list of three values: the number of negative values, the number of zero values
and the number of positive values.

The built-in tester uses the following datasets.

 d1 = [[0], [-3, 0], [-4, -2]]
 d2 = [[-3, 1, -2, 1], [-3, -3, -2, -4, -1, -4]]
 d3 = [[2, -1, 0], [3, 0, 3, -2, -2], [-1, -4, 3], [-4, 3, -1, 3]]
 d4 = []

The built-in tester for the module should produce the following output.

sig(d1): [3, 2, 0]

sig(d2): [8, 0, 2]

sig(d3): [7, 2, 6]

sig(d4): [0, 0, 0]

8. Implement module ds.py. The module defines a single function create(). The function has three
integer parameters nr, nc, and k.

The function returns a new dataset with nr rows with all rows having nc columns. Each cell value
is a random number from the range(0, k).

The built-in tester for the module should produce the following output.

create(2, 4, 5): [[3, 4, 3, 3], [4, 4, 1, 1]]

create(3, 2, 9): [[2, 6], [6, 4], [7, 3]]

create(3, 3, 4): [[2, 0, 2], [0, 3, 0], [2, 1, 2]]

	Read this entire page. You are responsible knowing what it says.
	Honor
	Important
	Problems

