
Separation of Concerns for Security

John Viega

Reliable Software Technologies

viega@rstcorp.com

David Evans

University of Virginia

Department of Computer Science

evans@cs.virginia.edu

Abstract

Writing secure code is something most developers
know little about. As a result, software vulnerabili-
ties are quite common. We postulate that, by isolating
security as a separate concern, this problem can be al-
leviated.

1 Introduction

We propose to solve some of the problems with de-
veloping secure software by separating out security as
a concern.1 Doing so will allow security policies to be
separate from the code, allowing developers to write
the main application, and a security expert to specify
security properties. Also, we believe that a well de-
signed policy language can abstract away much of the
expert knowlege currently required for writing secure,
allowing developers to reasonably secure their code,
even if a security expert is not available to assist.

Our approach is general enough to be applied to
any language, and in the future we anticipate experi-
menting with versions for several di�erent languages.
At present, we focus on C because its security vul-
nerabilities are well known and it is a relatively small
and simple language. Further, despite its 
aws, even
today C is still widely used to write security-critical
applications.

2 Motivation

Experience has shown that developers aren't very
good at writing secure software. Part of the problem
is a lack of education; few classes cover this material,
and no books cover it well. However, education isn't
the entire issue, as evidenced by the fact that bu�er
over
ow exploits in C code are quite common, even in

1Our work is being funded under the DARPA IASET

program.

software written by developers who know a lot about
this problem, including which functions in common
libraries are potentially dangerous.

We think it should be easier to design security into
an application, instead of relying on the \penetrate
and patch" approach to security, where problems are
addressed in an ad hoc manner, generally as 
aws
are revealed in the �eld. Unfortunately, the \pene-
trate and patch" approach to security is widespread,
as opposed to the alternative of designing software
with security in mind. There are two primary rea-
sons why this problem is so prevalent. The �rst is
that no coherent design time methodologies or tools
are widely available. In fact, there are no comprehen-
sive resources available to help write secure programs;
developers do not know what the problems are. As a
result, developers continue to write insecure code and
to �x security problems when someone happens to no-
tice them. The second problem is that designing and
implementing secure systems currently requires a lot
of expert knowledge. Even with good methodologies,
good tools are still critical to alleviating this problem,
as the average developer is likely to be either unwill-
ing or unable to use the methodology e�ectively if no
tools are available.

Another large part of the problem is the state of
programming languages from a security point of view.
A few languages have given signi�cant thought to se-
curity primitives that should be present to help pro-
grammers write better code. However, two of the most
widely used programming languages present signi�-
cant security risks (speci�cally, C and C++). This
is because many of their standard features can easily
be used in such a way to inadvertently leave a security

aw in a program. Even languages with signi�cant se-
curity architectures such as Java leave something to



be desired; we have found in practice while looking
at many commercial products that a large percent-
age of applications have signi�cant security problems
that are present in the design phase, and will persist
through to implementation despite the language used.
Some of the more common problems include misuse
of security protocols and an unrealistic view of what
a system should consider trusted. Languages have yet
to make signi�cant inroads in this area.

3 Goals
In talking with many developers about security, we

have noticed that even security-aware people �nd it
much easier to write their program, and then later go
back and try to \bolt-on" security as an afterthought.
In our experience, this approach doesn't work; secu-
rity currently generally needs to be designed into an
application from the beginning. There is a fundamen-
tal con
ict here between what works well in practice,
and the way developers work, even when they are well
educated on security matters.

All tools we have encountered to help prevent se-
curity vulnerabilities in general-purpose programming
languages are after the fact tools, such as vulnerabil-
ity analysis tools that look for common programming
and con�guration errors. They do not address how a
developer should design and implement software in a
security conscious manner. We believe that a more
proactive approach is appropriate. A good tool for
solving these problems would meet the following goals:

1. The amount of expert knowlege necessary to se-
cure source code should be minimized. It should
not be easy for a developer to accidentally in-
troduce security problems into a program just
because the language and the concepts of se-
cure programming haven't been mastered. Com-
mon language pitfalls should be averted, and the
programmer should be protected from common
paradigms of failure that are not language spe-
ci�c.

2. The security-related elements in a program
should be abstracted out of the program proper,
for the sake of clarity, maintainability and reuse.

3. Security policies should be de�ned using a general
enough language that it is possible to create new
policies to deal with application-speci�c issues or
previously unknown security vulnerabilities.

4. An emphasis should be placed on \security by de-
fault", so that the level of e�ort for developing se-
cure C and C++ applications is minimized. This

is a bigger challenge for C than for most other lan-
guages, since the language and standard libraries
contain so many unsafe operations. Bu�er over-

ows are one well known problem. Others include
�le access calls that are susceptible to security-
critical race conditions, as well as most uses of
the popen and system library calls.

5. Currently, if a security consideration is omitted
in just one place, it can easily lead to a 
aw. It
should be easy to express policies about the pro-
gram that apply generically to a consideration,
and then have the policy be applied through the
program automatically. For example, it should be
possible to say that no secret information is ever
sent over the network unencrypted (perhaps the
actual implementation may choose to encrypt all
data to satisfy this property).

6. Legacy source code with known or potential secu-
rity problems should be able to bene�t from such
a tool; the amount of new code necessary should
be minimized.

7. When it makes sense to do so, security policies
should be reusable across di�erent applications.

4 An Aspect-Oriented security ap-

proach
Seperation of concerns can help meet all of the

above goals. A speci�cation language can be de�ned
that will be woven with a C application, separating
security code from the rest of the program. This lan-
guage could have reasonable defaults that can be over-
ridden, and could have some degree of polymorphism
(e.g., the programmer should be able to de�ne classes
of variables, place variables in those classes on a case
by case basis and specify what kind of bu�er over
ow
protection each class should be a�orded). Such poly-
morphism would also help a�ord reuse of speci�cations
across applications; the security aspect language could
allow two types of speci�cations: those that map vari-
ables to symbolic names (program speci�c), and those
that de�ne security policies based on symbolic names.

We are in the process of designing and building
a speci�cation language intended to meet the above
goals. Speci�cations written in this language will be
woven together with C programs to produce secure
programs. Our approach will be to take the security
speci�cation and the C source, and \weave" the two
into a single C program.

some of the problems we are addressing include:

1. Bu�er over
ows.



2. Environmental attacks (Trojan environment vari-
ables).

3. File-based race conditions.

4. Randomness attacks (guessing security-critical
\random" numbers).

5. System call failures.

As an example of our approach, we will discuss sys-
tem call failures. Some attacks exploit system calls
failing in ways not anticipated by the programmer.
When those calls fail in an unexpected way, default
handlers should be called that perform reasonable ac-
tions. We will assume that the return values for indi-
vidual calls are not checked in the program proper, un-
less a static analysis can determine otherwise. In the
speci�cation language, programmers should be able to
specify a policy for all such calls, for single calls, and
for classes of calls. For example, one should be able
to say, \for every memory allocation call that fails,
abort". It should be possible to override this behav-
ior at individual sites, as well. The actual weaving is
a simple transformation. For example, consider the
following code that allocates 256 characters:

char *p;

p = (char *)malloc(256*sizeof(char));

A typical security speci�cation would direct the
weaver to convert this code to the following:

char *p;

p = (char *)malloc(256*sizeof(char));

if(p == NULL) {

log("Out of memory.");

abort();

}

We estimate that these kinds of problems cover at
least 90% of all security incidents in C programs over
the past 3 years (Bu�er over
ows alone account for
50% of the problem [10]).

We would also like to build features that ease the
burden of using other security primitives, such as:

1. Automatic logging.

2. Specifying critical sections.

3. Authentication and Encryption.

For example, network connections can be authen-
ticated and encrypted automatically via code instru-
mentation. In the case of authentication, we antic-
ipate two options. In one option, the program will

need to authenticate itself with a remote server. The
programmer would have to specify the type of au-
thentication expected by the remote server, and a
means by which to read the authentication data (e.g.,
a passphrase). The second option is that the program
is expecting remote authentication. In this case, the
programmer speci�es the type of authentication, and
also speci�es a database (such as a keystore) against
which the remote connection should be authenticated.
The actual implementation will just add approppriate
code surrounding those calls that establish a network
connection. The implementation of encrypted network
connections will be quite similar, except that reads
and writes to a network connection will also need to
be modi�ed to actually encrypt and decrypt.

5 Related work
The space of available software security assurance

is currently inhabited primarily by small, open source
tools that only address a fraction of the actual prob-
lem. There are multiple patches for the gcc compiler
that implement array bounds checking. There are sev-
eral tools that provide some sort of security against
bu�er over
ow attacks, including StackGuard[2] and
FIST[5]. However, most of these tools are solely inter-
ested in bu�er over
ows.

Another type of tool in the security assurance do-
main is the \secure data-
ow" tool. Examples of this
tool are the \taint" version of Perl, and the JFlow
programming language (a Java extension) [7]. In such
tools data are labeled either \untrusted" or \trusted".
\Untrusted" data cannot be passed to trusted items
without the programmer explicitly allowing it. Simi-
larly, \trusted" data cannot be passed to \untrusted"
items for fear of leaking secret information, unless ex-
plicitly declassi�ed by the programmer.

All of the capabilities of the above tools could be
described in a security speci�cation and woven into a
program using our aspect-oriented security approach.
We hope to incorporate existing tools as o� the shelf
technology whenever possible. For example, the afore-
mentioned tools for preventing bu�er over
ows can
potentially be leveraged in the implementation of our
approach. We hope to provide a uniform and general
purpose interface to these tools, while adding a large
amount of 
exibility and extensibility; only a few of
the many problems we seek to handle are addressed
by current tools.

Commercial tools in the security assurance space
are almost universally general-purpose, and not
security-speci�c. For example, there are many tools
such as Rational's Purify that can help �nd and �x
bu�er over
ow problems, even though the tool is not



speci�cally a security tool[6].
Another class of tools are after-the-fact tools that

support the \penetrate and patch" model. These tools
generally are concerned with taking preexisting source
code, and identifying potentially dangerous constructs
based on a database and some static analysis. Cur-
rently, the only publicly available tool for source code
analysis is ITS4, which scans C and C++ code for
over 100 potential problems[9]. Wagner has a bu�er-
over
ow scanner that performs a more sophisticated
analysis; however it is not publically available, and
is limited in scope[10]. Similar tools exist that are
general purpose, and may catch some security bugs,
including lint tools such as LCLint [3].

Previous work has also been done in policy lan-
guages for security. Most such languages specify �le
access control, allowing the programmer to give ex-
plicit policies stating what a program can and can-
not do to �les. Examples of such systems include
Naccio[4], Ariel[8] and PolicyMaker[1]. We anticipate
incorporating this sort of tool as a small part of our
total functionality.

6 Conclusion
We have identi�ed some of the major problems

plaguing software security, and discussed how sepa-
rating security from a program proper might help al-
leviate these problems. We are currently working on
designing a language for de�ning security concerns and
implementing a weaver that generates and integrates
code into C programs. There are many currently open
questions we plan to address in our work, including:

1. What properties are required of a language for
describing security policies that can be woven into
a program?

2. What class of security policies can be enforce us-
ing a separation of concerns approach?

3. What opportunities will there be to analyze secu-
rity speci�cations to make claims about programs
that have been woven into a single program?

References
[1] M. Blaze, J. Feigenbaum, and J. Lacy. Decen-

tralized trust management. In Proceedings of the
17th IEEE Symposium on Security and Privacy,
May 1996.

[2] C. Cowan et. al. Stackguard: Automatic adap-
tive detection and prevention of bu�er-over
ow
attacks. In Proceedings of the Seventh USENIX
Security Symposium, pages 63{77, San Antonio,
TX, 1998.

[3] D. Evans, J. Guttag, J. Horning, and Y. Meng
Tan. LCLint: A tool for using speci�cations to
check code. In Proceedings of the SIGSOFT Sym-
posium on the Foundations of Software Engineer-
ing, December 1994.

[4] D. Evans and A. Twyman. Flexible policy-
directed code safety. In Proceedings of the 1999
IEEE Symposium on Security and Privacy, May
1999.

[5] A. Ghosh, T. O'Connor, and G. McGraw. An
automated approach for identifying potential vul-
nerabilities in software. In Proceedings of the 1998
IEEE Symposium on Security and Privacy, May
1998.

[6] R. Hastings and B. Joyce. Purify: Fast detection
of memory leaks and access errors. In Proceedings
of the Winter USENIX Conference, 1992.

[7] A. Myers. Practical mostly-static information

ow control. In Proceedings of ACM SIGPLAN-
SIGACT Symposium on Principles of Program-
ming Languages, San Antonio, TX, January 1999.

[8] R. Pandey and B. Hashii. Providing �ne-grained
access control for mobile programs through bi-
nary editing. Technical Report CSE-98-8, Uni-
versity of California, Davis, 1998.

[9] J. Viega, J.T. Bloch, T. Kohno, and G. McGraw.
Its4: A static vulnerability scanner for C and
C++ code. In Submitted to USENIX Security,
2000.

[10] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A
�rst step towards automated detection of bu�er
overrun vulnerabilities. In Proceedings of the Year
2000 Network and Distributed System Security
Symposium (NDSS), pages 3{17, San Diego, CA,
2000.


