
Toward Robust Integrated Circuits: The
Embryonics Approach

Daniel Mange, MEMBER, IEEE, Moshe Sipper, SENIOR MEMBER, IEEE, André Stauffer, MEMBER, IEEE,
AND Gianluca Tempesti, MEMBER, IEEE

Invited Paper

The growth and operation of all living beings are directed by
the interpretation, in each of their cells, of a chemical program,
the DNA string or genome. This process is the source of inspiration
for the Embryonics (embryonic electronics) project, whose final ob-
jective is the design of highly robust integrated circuits, endowed
with properties usually associated with the living world: self-repair
(cicatrization) and self-replication. The Embryonics architecture is
based on four hierarchical levels of organization. 1) The basic prim-
itive of our system is the molecule, a multiplexer-based element of
a novel programmable circuit. 2) A finite set of molecules makes up
a cell, essentially a small processor with an associated memory. 3)
A finite set of cells makes up an organism, an application-specific
multiprocessor system. 4) The organism can itself replicate, giving
rise to a population of identical organisms. We begin by describing
in detail the implementation of an artificial cell characterized by
a fixed architecture, showing that multicellular arrays can realize
a variety of different organisms, all capable of self-replication and
self-repair. In order to allow for a wide range of applications, we
then introduce a flexible architecture, realized using a new type of
fine-grained field-programmable gate array whose basic element,
our molecule, is essentially a programmable multiplexer. We de-
scribe the implementation of such a molecule, with built-in self-test,
and illustrate its use in realizing two applications: a modulo-4 re-
versible counter (a unicellular organism) and a timer (a complex
multicellular organism). Last, we describe our ongoing research
efforts to meet three challenges: a scientific challenge, that of im-
plementing the original specifications formulated by John von Neu-
mann for the conception of a self-replicating automaton; a technical
challenge, that of realizing very robust integrated circuits capable
of self-repair and self-replication; and a biological challenge, that
of attempting to show that the microscopic architectures of artificial
and natural organisms, i.e., their genomes, share common proper-
ties.

Keywords—Built-in self-test, embryonic electronics, field-pro-
grammable gate arrays (FPGA’s), multiplexer-based FPGA’s, self-
repairing FPGA’s, self-replicating FPGA’s.

Manuscript received April 12, 1999; revised January 12, 2000. This
work was supported in part by the Swiss National Foundation under Grant
21-54 113.98, by the Consorzio Ferrara Richerche, Università di Ferrara,
Ferrara, Italy, and by the Leenaards Foundation, Lausanne, Switzerland.

The authors are with the Logic Systems Laboratory, Swiss Federal Insti-
tute of Technology, Lausanne CH-1015 Switzerland.

Publisher Item Identifier S 0018-9219(00)02876-0.

I. INTRODUCTION

A. Toward Embryonics

A human being consists of approximately 60 trillion (60
10 cells. At each instant, in each of these 60 trillion

cells, thegenome, a ribbon of 2 billion characters, is decoded
to produce the proteins needed for the survival of the or-
ganism. This genome contains the ensemble of the genetic
inheritance of the individual and, at the same time, the in-
structions for both the construction and the operation of the
organism. The parallel execution of 60 trillion genomes in
as many cells occurs ceaselessly from the conception to the
death of the individual. Faults are rare and, in the majority
of cases, successfully detected and repaired. This process is
remarkable for its complexity and its precision. Moreover,
it relies on completely discrete information: the structure of
DNA (the chemical substrate of the genome) is a sequence of
four bases, usually designated with the letters A (adenine), C
(cytosine), G (guanine), and T (thymine).

Our Embryonicsproject (for embryonic electronics) is
inspired by the basic processes of molecular biology and by
the embryonic development of living beings [1], [43]. By
adopting certain features of cellular organization, and by
transposing them to the two-dimensional world of integrated
circuits on silicon, we will show that properties unique to
the living world, such asself-replicationandself-repair, can
also be applied to artificial objects (integrated circuits). We
wish however to emphasize that the goal of bio-inspiration is
not the modelization or the explication of actual biological
phenomena.

B. Objectives and Strategy

Our final objective is the development of very large-scale
integrated (VLSI) circuits capable of self-repair and
self-replication. Self-repair allows partial reconstruction in
case of a minor fault, while self-replication allows complete
reconstruction of the original device in case of a major fault.

0018–9219/00$10.00 © 2000 IEEE

516 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000

These two properties are particularly desirable for complex
artificial systems requiring improved reliability in short-,
medium-, or long-term applications.

1) Short-term applications [2]:
• applications that require very high levels of reli-

ability, such as avionics or medical electronics;
• applications designed for hostile environments,

such as space, where the increased radiation
levels reduce the reliability of components;

• applications that exploit the latest technolog-
ical advances, and notably the drastic device
shrinking, low power-supply levels, and in-
creasing operating speeds, which accompany
the technological evolution to deeper submi-
crometer levels and significantly reduce the
noise margins and increase the soft-error rates
[33].

2) Medium-term applications, where our aim is to de-
velop very complex integrated circuits capable of
on-line self-repair, dispensing with the systematic de-
tection of faults at fabrication, impossible for systems
consisting of millions of logic gates [34].

3) Long-term applications, executed on systems built
with imperfect components: this is von Neumann's
historical idea [8], the basis of all present projects
aimed at the realization of complex integrated circuits
at the atomic scale (nanotechnologies) [35]–[38].

Self-replication, or “cloning,” can be justified indepen-
dently of self-repair:

• to replicate, within a field-programmable gate array
(FPGA), functionally equivalent systems [39];

• to produce the massive quantity of future integrated cir-
cuits, implemented using nanotechnologies [30];

• to finally accomplish von Neumann's unachieved
dream, that is, the realization of a self-replicating
automaton endowed with the properties of universal
computation and construction [8].

These emerging needs require the development of a
new design paradigm that supports efficient online VLSI
testing and self-repair solutions. Inspired by the architecture
of living beings, we will show how to implement online
testing, self-repair, and self-replication using both hardware
and software redundancy. The programmable degree of
robustness of our systems, a function of an overhead itself
programmable, is one of the major original features of the
Embryonics project.

Section II provides a bird's eye view of Embryonics. This
section is self-contained so as to give the reader a general
overview of our project without delving into the technical
details of the following sections. The final Embryonics archi-
tecture is based on four hierarchical levels of organization.

• The basic primitive of our system is themolecule, the
element of a novel programmable circuit, built around
a multiplexer.

• A finite set of molecules makes up acell, essentially a
small processor with the associated memory.

• A finite set of cells makes up anorganism, an applica-
tion-specific multiprocessor system.

• The organism can itself replicate, giving rise to apop-
ulation of identical organisms, the highest level of our
hierarchy.

Section III describes in detail the implementation of a pro-
totype of an artificial cell characterized by afixed archi-
tecture. We then show that multicellular arrays can realize
a variety of different organisms (electronic watch, random
number generator, Turing machine), all capable of self-repli-
cation and self-repair.

We will see that to meet the requirements of a wide range
of applications, we need to develop an architecture charac-
terized by aflexible architecture, that is, an architecture that
is itself reconfigurable. This architecture will be based on
a new type of fine-grained FPGA whose basic element, the
molecule, is essentially a programmable multiplexer. Sec-
tion IV describes the implementation of such a molecule,
with built-in self-test and shows its use for two applications
of very different complexity: a modulo-4 reversible counter
and a timer.

The main goal of the Embryonics project is to explore
the potential of a novel, robust architecture, rather than to
compare such an architecture with existing solutions. After
describing the trials and errors of the project, the conclusion
of Section V introduces our ongoing research along three
axes, each representing a different challenge: a scientific
challenge, that of implementing in our architecture the
original specifications formulated by von Neumann for the
conception of a self-replicating automaton; a technical chal-
lenge, that of realizing real integrated circuits, capable of
self-repair and of self-replication; and a biological challenge,
that of seeking to show that the microscopic architecture of
the artificial and natural organisms, that is, the structure of
their genomes, share some common properties.

II. A B IRD'S EYE VIEW OF EMBRYONICS

A. From Biology to Hardware

The majority of living beings, with the exception of uni-
cellular organisms such as viruses and bacteria, share three
fundamental features.

1) Multicellular organizationdivides the organism into a
finite number ofcells, each realizing a unique function
(neuron, muscle, intestine, etc.). The same organism
can contain multiple cells of the same kind.

2) Cellular divisionis the process whereby each cell (be-
ginning with the first cell orzygote) generates one or
two daughter cells. During this division, all of the ge-
netic material of the mother cell, thegenome, is copied
into the daughter cell(s).

3) Cellular differentiationdefines the role of each cell of
the organism, that is, its particular function (neuron,
muscle, intestine, etc.). This specialization of the cell is
obtained through the expression of part of the genome,
consisting of one or moregenes, and depends essen-
tially on the physical position of the cell in the or-
ganism.

MANGE et al.: TOWARDS ROBUST INTEGRATED CIRCUITS 517

Fig. 1. Multicellular organization of a 6-cell organismORG.

A consequence of these three features is that each cell is
“universal,” since it contains the whole of the organism's ge-
netic material, the genome. Should a minor (wound) or major
(loss of an organ) trauma occur, living organisms are thus po-
tentially capable of self-repair (cicatrization) or self-replica-
tion (cloning or budding) [1].

The two properties of self-repair and self-replication based
on a multicellular tissue are unique to the living world. The
main goal of the Embryonics project is the implementation of
the above three features of living organisms in an integrated
circuit in silicon, in order to obtain the properties of self-
repair and self-replication.

Our artificial organism will ultimately be divided into
cells, themselves decomposed into molecules, a structure
that determines the plan of this section: Section II-B de-
scribes the three fundamental features of the organism
(multicellular organization, cellular differentiation, and
cellular division), while in Section II-C we demonstrate
that the organism, thanks to these three features, exhibits
the two sought properties (self-replication and self-repair).
Section II-D describes the cells and presents their essential
features (multimolecular organization, molecular configu-
ration, and molecular error detection), while Section II-E
shows that the two sought properties (self-replication and
self-repair) apply at the cellular level as well as at the organ-
ismic level. Section II-F underscores the four organizational
levels of the hierarchy of the Embryonics project, which are,
from the bottom up, the molecule, the cell, the organism,
and the population of organisms.

B. The Organism's Features: Multicellular Organization,
Cellular Differentiation, and Cellular Division

The environment in which our quasi-biological develop-
ment occurs is imposed by the structure of electronic cir-
cuit and consists of a finite (but arbitrarily large) two-dimen-
sional surface of silicon. This surface is divided into rows
and columns, whose intersections define the cells. Since such
cells (small processors and their memory) have an identical
physical structure (i.e., an identical set of logic operators and
of connections), the cellular array is homogeneous. As the
program in each cell (our artificial genome) is identical, only
the state of a cell (i.e., the contents of its registers) can dif-
ferentiate it from its neighbors.

In this section, we first show how to implement in our
artificial organisms the three fundamental features of mul-
ticellular organization, cellular differentiation, and cellular
division, by using a generic and abstract six-cell example. In
Sections III and IV, we will propose an actual implementa-
tion and various applications.Multicellular organizationdi-
vides the artificial organism () into a finite number of
cells (Fig. 1). Each cell () realizes a unique function,
defined by a subprogram called thegeneof the cell and se-
lected as a function of the values of both the horizontal ()
and the vertical () coordinates (in Fig. 1, the genes are la-
beled to for coordinates to). Our final
artificial genome will be divided into three main parts: the
operative genome(), theribosomic genome(), and the
polymerase genome(). Let us call operative genome ()
a program containing all the genes of an artificial organism,
where each gene (to) is a subprogram characterized by
a set of instructions and by the cell's position (coordinates

to). Fig.1 is then a graphical representa-
tion of organism 's operative genome.

Let then each cell contain the entire operative genome
[Fig. 2(a)]: depending on its position in the array, i.e., its
place within the organism, each cell can then interpret the
operative genome and extract and execute the gene which
defines its function. In summary, storing the whole opera-
tive genome in each cell makes the cell universal: given the
proper coordinates, it can execute any one of the genes of
the operative genome and thus implementcellular differenti-
ation. In our artificial organism, any cell contin-
uously computes its coordinateby incrementing the coor-
dinate of its neighbor immediately to the west [Fig. 2(b)].
Likewise, it continuously computes its coordinateby incre-
menting the coordinate of its neighbor immediately to the
south. Taking into consideration these computations, Fig. 3
shows the final operative genome of the organism .

At startup, the first cell orzygote(Fig. 4), arbitrarily de-
fined as having the coordinates , holds the one and
only copy of the operative genome . After time , the
genome of the zygote (mothercell) is copied into the neigh-
boring (daughter) cells to the east () and to the
north (). This process ofcellular division con-
tinues until the six cells of the organism are completely
programmed (in our example, the farthest cell is programmed
after time).

518 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000

(a)

(b)

Fig. 2. Cellular differentiation. (a) Global organization. (b) A
cell CELL[X,Y] with its west neighborCELL[WX,Y] and its south
neighborCELL[X,SY]; X=WX+1; Y=SY+1.

Fig. 3. The operative genomeOG of the organismORG.

C. The Organism's Properties: Organismic Self-Replication
and Organismic Self-Repair

The self-replicationor cloning of the organism, i.e., the
production of an exact copy of the original, rests on two as-
sumptions.

• There exists a sufficient number of spare cells in the
array (at least six in the example of Fig. 5) to contain
the additional organism.

• The calculation of the coordinates produces a cycle
(and
in Fig. 5, implying and

).
As the same pattern of coordinates produces the same

pattern of genes, self-replication can be easily accomplished
if the program of the operative genome , associated
with the homogeneous array of cells, produces several

Fig. 4. Cellular division;OG: operative genome;t1 . . . t3: three
cellular divisions.

Fig. 5. Self-replication of a six-cell organism ORG in a limited
homogeneous array of 6� 4 cells (situation at timet5 after 5 cellular
divisions);MOTHER ORG = mother organism;DAUGHTER ORG =

daughter organism.

occurrences of the basic pattern of coordinates. In our
example (Fig. 5), the repetition of the vertical coordinate
pattern () in a sufficiently large array
of cells produces one copy, thedaughter organism, of the
original mother organism. Given a sufficiently large space,
the self-replication process can be repeated for any number
of specimens in the and/or the axes.

In order to implement theself-repair of the organism, we
decided to use spare cells to the right of the original organism
(Fig.6). The existence of a fault is detected by a signal,
which is calculated in each cell by a built-in self-test mech-
anism realized at the molecular level (see Section II-E). The
state identifies the faulty cell, and the entire column
to which the faulty cell belongs is considered faulty and is de-
activated (column in Fig. 6). All the functions (coordi-
nate and gene) of the cells to the right of the column are
shifted by one column to the right. Obviously, this process re-
quires as many spare columns to the right of the array as there
are faulty cells or columns to repair (two spare columns, tol-
erating two successive faulty cells, in the example of Fig. 6).
It also implies that the cell needs to be able to bypass the
faulty column and to divert to the right all the required sig-
nals (such as the operative genome and thecoordinate, as
well as the data buses).

Given a sufficient number of cells, it is obviously possible
to combine self-repair in the direction and self-replication
in both the and directions.

MANGE et al.: TOWARDS ROBUST INTEGRATED CIRCUITS 519

Fig. 6. Organismic self-repair.

D. The Cell's Features: Multimolecular Organization,
Molecular Configuration, and Molecular Fault Detection

In each cell of every living being, the genome is translated
sequentially by a chemical processor, theribosome, to create
the proteins needed for the organism's survival. The ribosome
itself consists of molecules, whose description is an impor-
tant part of the genome.

As mentioned, in the Embryonics project each cell is a
small processor, sequentially executing the instructions of a
first part of the artificial genome, the operative genome.
The need to realize organisms of varying degrees of com-
plexity has led us to design an artificial cell characterized by
a flexible architecture that is itself configurable. It will there-
fore be implemented using a new kind of fine-grained FPGA.

Each element of this FPGA (consisting essentially of a
multiplexer associated with a programmable connection
network) is then equivalent to amolecule, and an appropriate
number of these artificial molecules allows us to realize
application-specific processors. We will callmultimolecular
organizationthe use of many molecules to realize one cell.
The configuration string of the FPGA (that is, the informa-
tion required to assign the logic function of each molecule)
constitutes the second part of our artificial genome: the
ribosomic genome . Fig.7(a) shows a generic and abstract
example of an extremely simple cell () consisting of six
molecules, each defined by amolecular codeor
(to). The set of these six ’s constitutes the
ribosomic genome of the cell.

The information contained in the ribosomic genome
thus defines the logic function of each molecule by assigning
a molecular code to it. To obtain a functional cell,
we require two additional pieces of information:

• the physical positionof each molecule in the cellular
space;

• the presence of one or morespare columns, composed
of spare molecules, required for the self-repair de-
scribed below (Section II-E).

The definition of these pieces of information is themolec-
ular configuration[Fig.7(b)]. Their injection into the FPGA
will allow:

1) the creation of a border surrounding the molecules of
a given cell;

2) the insertion of one or more spare columns;
3) the definition of the connections between the

molecules, required for the propagation of the ri-
bosomic genome .

The information needed for the molecular configuration
(essentially, the height and width of the cell in number of
molecules and the position of the spare columns) makes up
the third and last part of our artificial genome: thepoly-
merase genome (a terminology that will be justified in
Section II-E).

Last, it is imperative to be able to automatically detect the
presence of faults at the molecular level and to relay this in-
formation to the cellular level. Moreover, if we consider that
the death of a column of cells is quite expensive in terms of
wasted resources, the ability to repair at least some of these
faults at the molecular level (that is, without invoking the or-
ganismic self-repair mechanism) becomes highly desirable.
The biological inspiration for this process derives from the
DNA's double helix, the physical support of natural genomes,
which provides complete redundancy of the genomic infor-
mation though the presence of complementary bases in the
opposing branches of the helix. By duplicating the material
of each molecule (essentially the multiplexer) and by
continuously comparing the signals produced by each of the
two copies [Fig. 7(c)], it is possible to detect a faulty mole-
cule and to generate a signal , realizing themolec-
ular fault detection that will make possible cellular self-re-
pair (described below in Section II-E).

E. The Cell's Properties: Cellular Self-Replication and
Cellular Self-Repair

A consequence of the multimolecular organization and
of the molecular configuration of the FPGA [Section II-D
and Fig.7(b)] is the ability, for any given cell, to propagate
its polymerase genome and its ribosomic genome in
order to automatically configure two daughter cells, archi-
tecturally identical to the mother cell, to the east and to the
north (Fig. 8), thus implementingcellular self-replication.

Cellular self-replication is a prerequisite for cellular divi-
sion at the organismic level described above [Section II-B
and Fig.4], during which the operative genome is copied
from the mother cell into the daughter cells. In living sys-
tems, a specific molecule, thepolymerase enzyme, allows
cellular replication through the duplication of the genome.
It is by analogy to this enzyme that the third part of our arti-
ficial genome is called polymerase genome.

The presence of spare columns, defined by the molec-
ular configuration, and the automatic detection of faulty
molecules (Section II-D, Fig.7(b) and (c) allowcellular

520 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000

(a)

(b)

(c)

Fig. 7. The cell's features. (a) Multimolecular organization;
RG: ribosomic genome:a, b, c, d, e, f. (b) Molecular
configuration;PG: polymerase genome: height� width = 3 � 3;

001 = spare column. (c) Molecular fault detection;MUX:
multiplexer;COMP: comparator.

self-repair: each faulty molecule is deactivated, isolated
from the network, and replaced by a neighboring molecule,
which will itself be replaced by a neighbor, and so on until a
spare molecule () is reached [Fig. 9(a)].

The number of faulty molecules handled by the molec-
ular self-repair mechanism is necessarily limited: in the
example of Fig.9(a), we tolerate at most one faulty mol-
ecule per row. If more than one molecule is faulty in
one or more rows [Fig. 9(b)], molecular self-repair is
impossible, in which case a global signal is gener-
ated to activate the organismic self-repair described above
(Section II-C and Fig. 6).

Fig. 8. Cellular self-replication;T1: one instance of cellular
self-replication;RG: ribosomic genome;PG: polymerase genome.

F. The Embryonics Landscape

The final architecture of the Embryonics project is based
on four hierarchical levels of organization which, described
from the bottom up, are the following (Fig. 10).

• The basic primitive of our system is themolecule, the
element of our new FPGA, consisting essentially of a
multiplexer associated with a programmable connec-
tion network. The multiplexer is duplicated to allow the
detection of faults. The logic function of each molecule
is defined by its molecular code or .

• A finite set of molecules makes up acell, essentially a
processor with the associated memory. In a first pro-
gramming step of the FPGA, the polymerase genome

defines the topology of the cell, that is, its width,
height, and the presence and positions of columns
of spare molecules. In a second step, the ribosomic
genome defines the logic function of each molecule
by assigning its molecular code or .

• A finite set of cells makes up anorganism, an applica-
tion-specific multiprocessor system. In a third and last
programming step, the operative genomeis copied
into the memory of each cell to define the particular ap-
plication executed by the organism (electronic watch,
random number generator, and Turing machine being
examples shown by us to date).

• The organism can itself self-replicate, giving rise to a
populationof identical organisms, the highest level of
our hierarchy.

III. A C ELLULAR IMPLEMENTATION AND ITS APPLICATIONS

In the Embryonics project, each cell of our artificial
organism will be implemented by a small processor exe-

MANGE et al.: TOWARDS ROBUST INTEGRATED CIRCUITS 521

(a)

(b)

Fig. 9. Cellular self-repair. (a) Possible self-repair (at most one
faulty molecule per row). (b) Impossible self-repair (more than one
faulty molecule per row):KILL=1 (self-repair at the organismic
level).

Fig. 10. The Embryonics landscape: a four-level hierarchy.

cuting sequentially the instructions of the operative genome
. While our final objective is the conception of a new

FPGA (the molecular FPGA described in Section II-D),

which will allow us to adapt the architecture of our cells
to a given problem, we decided to test our approach on
a demonstration system in which each artificial cell is
characterized by afixed architecture. Section III-A describes
in detail our artificial cell, while in Sections III-B–D, we
show that multicellular arrays can realize a variety of very
different organisms (electronic watch, random number
generator, Turing machine), all capable of self-replication
and self-repair. Last, Section III-E deals with the range of
applications for our cell and its limitations.

A. A Cell Based on a Binary Decision Machine

Our artificial cell, calledMICTREE(for microinstruction
tree) is basically abinary decision machine[3]–[5] imple-
mented using standard electronic components and embedded
into a plastic container [Fig. 11(a)]. These containers can
easily be joined to obtain two-dimensional arrays as large as
desired [Fig. 14(b)].

The MICTREE cell sequentially executes microprograms
written using the following set of instructions [Fig. 11(b)]:

• ;
• ;
• ;
• ;
• ;
• .

The state register and both coordinate regis-
ters and are 4 bits wide (, , and

). The variable designates any one of
the 4-bit-wide output buses in the four cardinal direc-
tions (),
while the variables designates any one of
the 4-bit-wide input buses or the state register
(). Thus,
the instruction “ ” allows the value
of any of the input buses or of the state register to
be sent to any of the cell's four cardinal neighbors. The
test variables include the set and the following
additional variables: (the coordinate sent by the
cell's western neighbor), (the coordinates sent
by the cells' southern neighbor), and(a global variable,
usually reserved for the synchronization clock).

The coordinates are transmitted from cell to cell seri-
ally, but are computed in parallel within the cell. There-
fore, each cell performs a series-to-parallel conversion on
the incoming coordinates and , and a parallel-to-se-
ries conversion of the coordinates and it computes
and propagates to the east and north. The genome micro-
program is also coded serially: it enters the cells through
the pin(s) and is then propagated through the
pin(s). The pins and ’ are used, respectively, for
the propagation of the clock signal and to reset the binary
decision machines, while the signal (bypass), con-
necting all the cells in a column, is used for self-repair.
In a MICTREE cell, pressing the button alerts a
cell to the presence of a fault. The button therefore
replaces, in the demonstration system, the molecular fault

522 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000

(a)

(b)

Fig. 11. The MICTREE artificial cell. (a) Front panel of a
demonstration module implementing the cell. (b) Block diagram;
SB: switch block; BDM: binary decision machine;RAM: random
access memory.

detection mechanism mentioned in Section II. The effect
of the button is to deactivate the column containing
the faulty cell: all the cells in the column “disappear”
from the array, that is, become transparent with respect
to all horizontal signals. Since the computation of the
coordinates occurs locally depending on the neighbors'
coordinates, such disappearance automatically engenders
a recomputation of the coordinates of all the cells to right
of the deactivated column, completing the reconfiguration
of the array.

The size of the artificial organism embedded into an array
of MICTREE cells is limited in the first place by the coordi-
nate space (, that is, a maximum of 256
cells in our current implementation, a limit imposed by the
size of the coordinate registers) and then by the size of the
memory of the binary decision machine storing the genome
microprogram (1024 instructions). An editor, a compiler for
the assembly language, and a loader simplify the task of
writing and debugging the microprograms and generating the
genome's binary code, charged serially through theinput
of the mother cell.

B. The StopWatch and the BioWatch

For clarity's sake, we will begin with a simple example of
a one-dimensional artificial organism: atimer, calledStop-
Watch, designed to count seconds (from 00 to 59) and min-
utes (from 00 to 59) [44], [45]. This organism is implemented
with four cells [Fig.12(a)] and is characterized by two dis-
tinct genes: “ ”, which counts modulo 10 the
units of seconds or minutes, and “Countmod6,” which counts
modulo 6 tens of seconds or tens of minutes. The conception
of these genes using the instructions of Section III-A is de-
scribed in detail elsewhere [4].

Fig. 12(a) shows the operative genomeof StopWatch
(i.e., the set of all the genes with the correspondingcoordi-
nate). By storing in each cell the entire operative genome,
we implement cellular differentiation [Fig.12(b)]. In order
to verify the property of self-replication of the organism
[Fig. 13(a)], the computation of the coordinate occurs
modulo 4. The final program, the operative genome, is
shown in Fig. 12(c).

The self-replication of StopWatch can be accomplished if:

1) there exists a sufficient number of spare cells [four
cells to the right of the original organism in Fig. 13(a)];

2) the calculation of the coordinate produces a cycle
().

If both these conditions are satisfied, themother organism
produces an exact copy of itself, thedaughter organism.

To demonstrate the self-repair of StopWatch, we will use
the four cells to the right of the original organism [Fig. 13(b)]
as spare cells. Once a faulty cell has been identified [state

in cell for the original organism of Fig.13(b)], all
the functions (coordinate and gene) of the cells on the right
of column are shifted by one column to the right. In the
one-dimensional example of StopWatch, the presence of four
spare cells allows the organism to tolerate four successive
faulty cells.

By adding a modulo-24 counter for counting the hours
(from 00 to 23) to our modulo-3600 counter (the StopWatch),
we can easily realize afull digital watch, calledBioWatch,
(Fig. 14) [4]. The modulo-24 counter is the composition of
two partial counters, one for the units of hours, the other for
the tens of hours. The final genome of the full digital watch
thus consists of four distinct genes, distributed among six
cells identified by the horizontal coordinates to .

With a greater number of MICTREE cells, it would be easy
to introduce additional features to our electronic watch, that
is, functions other than the counting of seconds, minutes, and
hours. For example, computing the date, keeping track of the
day of the week, or handling leap years. In any case, the ge-
nomic design of the BioWatch guarantees extreme flexibility
through genome reprogramming, as well as considerable re-
liability, thanks to the self-repair and self-replication proper-
ties.

C. A Random Number Generator

Wolfram [6] exhaustively studied uniformone-dimen-
sional cellular automataconsisting of identical cells defined
by a binary state and a neighborhood with a connectivity

MANGE et al.: TOWARDS ROBUST INTEGRATED CIRCUITS 523

(a)

(b)

(c)

Fig. 12. StopWatch, a digital timer. (a) Multicellular organization. (b) Cellular differentiation.
(c) The operative genomeOG.

radius equal to one (i.e., the future state of a given cell
depends on the present stateof the cell itself and on that
of its immediate neighbors to the west and to the east

). Such a cell is defined by a truth table of lines,
and there exist such truth tables. Each of these
functions is called therule of the automaton and is identified
by a decimal number between 0 and 255. Hortensiuset al.
[7] have shown that a well-chosen arrangement of Wolfram
cells of type 90 and 150 produces anonuniform cellular
automatonwhich is, in fact, arandom number generator.
For a five-cell automaton, the final arrangement is shown in
Fig. 15. In such an arrangement, theperiodic condition(i.e.,
the values of the inputs of the leftmost and rightmost cells)
is equal to zero. The global state is a fixed point of
the generator, while the remaining states form
a cycle of maximum length.

The properties of self-replication and self-repair of the
random number generator were demonstrated and have been
described elsewhere [5].

D. A Specialized Turing Machine

With a more theoretical goal in mind, in order to com-
pare the capabilities of the Embryonics project with those of
von Neumann's self-replicating automaton [8], we wanted to

show that an artificial multicellular organism can implement
a specialized Turing machine and exhibit the properties of
self-replication and self-repair [9].

The example we settled upon is that of aparenthesis
checker, as described by Minsky [10]. The function of the
machine is to decide whether a sequence of left (open)
and right (closed) parentheses is well-formed (i.e., if for
every open parenthesis in the sequence there exists a corre-
sponding closed parenthesis). A specialized Turing machine
for checking parentheses consists of atape, decomposed
into squares, and afinite-state machinewith a read/write
head.

For the very simple example of Fig. 16, which checks
the sequence (where is a symbol delimiting the se-
quence of parentheses), we can implement the Turing ma-
chine as a multicellular organism with the following struc-
ture.

• For , we use five cells to display the sequence
. These five cells correspond to the tape of the

Turing machine.
• For , we use five cells to implement the read head

of the Turing machine. In fact, the head is realized by
only one of the cells (in Fig. 16), the others being

524 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000

(a)

(b)

Fig. 13. The four-cell StopWatch organism. (a) Self-replication in an array of cells (t1 . . . t7: seven
cellular divisions). (b) Self-repair with two spare cells and one faulty cell.

inactive. The head is mobile: depending on its current
state (, or), it can move, in the next clock cycle,
to the right, to the left, or stay in place.

There exist, finally, only two distinct genes: theHead
gene, which implements the algorithm for checking the
parentheses and is executed by the cells of row, and
the Tape gene, which describes the state of the tape and
is executed by the cells of row . In addition, each
cell is defined by aninitial condition, that is, a specific
value of the register at the beginning of the algorithm
(for for in
Fig. 16).

The properties of self-replication and self-repair of this
application are demonstrated elsewhere [4], [9].

E. Final Remarks

The main focus of this section was the description of an
artificial cell, called MICTREE, based on a binary decision
machine capable of executing a microprogram of up to 1024
instructions. Any organism realized using MICTREE cells
satisfies the three features of the Embryonics project (Sec-
tion II-B): multicellular organization, cellular differentiation,
and cellular division. The MICTREE cell, itself realized with
a commercial FPGA and a RAM, was finally embedded into
a demonstration module, and we showed that an array of
these modules exhibits the two desired properties of self-re-
pair and self-replication.

The trivial applications of the MICTREE family are those
in which all the cells in the array contain the same gene: the
genome and the gene then become indistinguishable and the

calculation of the coordinates is superfluous. In this case,
the cellular array is not limited in space. One-dimensional
(e.g., Wolfram's) [6] and two-dimensional (e.g., Conway's
Life) [11] uniform cellular automata are natural candidates
for this kind of realization. The nontrivial applications are
those in which the cells in an array have different genes: the
genome is then a collections of genes, and the coordinates
become necessary. The cellular array is then limited by the
coordinate space (cells in the proposed re-
alization). One-dimensional (like the examples of the Stop-
Watch, BioWatch, and the random number generator) and
two-dimensional (specialized Turing machine) cellular au-
tomata fall into this category. Let us also mention that the
realization of uniform cellular automata with the automatic
calculation of an initial condition (realized by setting the in-
ternal register to a predetermined value in each cell of
the organism at the start) is an important special case which
also requires separate genes and a coordinate system.

IV. A M OLECULAR IMPLEMENTATION AND ITS

APPLICATIONS

In Section III, we introduced the implementation of an ar-
tificial cell, called MICTREE. Its architecture isfixed, and it
is thus easy to find an application whose requirements exceed
the capabilities of the MICTREE cell: a number of instruc-
tions greater then 1024, horizontal or vertical coordinates su-
perior to 16, or a register of more than 4 bits are all demands
which would require a redesign of the original cell. To meet
the requirements of all possible applications, we want to de-
velop an artificial cell endowed with aflexible architecture,

MANGE et al.: TOWARDS ROBUST INTEGRATED CIRCUITS 525

(a)

(b)

Fig. 14. BioWatch, a full digital watch. (a) Multicellular organization (X=1: tens of hours;X=2: units
of hours). (b) Experiment with eight MICTREE cells and two spare cells.

that is, an architecture which is itself configurable. This ar-
chitecture will be realized using a novel fine-grained FPGA.

A consequence of our choices is that we require a method-
ology to generate, starting from a set of specifications, the
configuration of our FPGA, consisting of a homogeneous
network of elements, themolecules, defined by an identical
architecture and a usually distinct state (themolecular code,
or).

To fulfill this requirement, we have selected a partic-
ular representation: theordered binary decision diagram
(OBDD) [12]–[14]. This representation, with its well-known
intrinsic properties such as canonicity, was chosen for two
main reasons.

• It is a graphical representation, which exploits well
the two-dimensional space and immediately suggests
a physical realization on silicon.

• Its structure leads to a natural decomposition into
molecules realizing a logic test, easily implemented
by a multiplexer.

Our choice led us to define our FPGA as a homoge-
neous multimolecular array where each molecule contains
a programmable multiplexer with one control variable,
implementing precisely a logic test. The three main features
of this FPGA, introduced in Section II-D (Fig. 10), are the
following.

• Multimolecular organizationdivides the cell into an
array of physically identical elements, the molecules.
The configuration string of all the molecules of a cell
is equivalent to the ribosomic genome.

• Molecular configurationdetermines the physical posi-
tion of each molecule in the cellular space according to
the information contained in the polymerase genome

.

526 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000

(a)

(b)

Fig.15. A random number generator. (a) Multicellular
organization. (b) The operative genomeOG.

• Molecular fault detectiondetects and localizes faults
occurring at the molecular level.

The plan of this section is the consequence of this struc-
ture. Section IV-A describes the core of our molecule (the
programmable multiplexer and its short- and long-distance
connections) and defines the molecular code , the
building block of the ribosomic genome . Section IV-B in-
troduces thespace divider, a state machine that allows mul-
tiple molecules to be grouped in order to form a cell, and
defines the polymerase genome. Section IV-C ends the
description of the molecule with the introduction of the au-
tomatic fault detection system required for self-repair. Sec-
tion IV-D presents the implementation of a prototype of our
molecule, while Sections IV-E and -F present two applica-
tions of widely different complexity (a counter and a binary
decision machine). Last, Section IV-F deals with the range
of applications for our molecule and its limitations.

A. Molecule Based on a Multiplexer

The main features of our artificial molecule, henceforth
referred to asMUXTREE(for multiplexer tree) [4], [15], [16],
are the following (Fig. 17).

• Each of the two inputs of the multiplexer (inputs
and) is programmable. The input is either a logic

constant (or), the output of one of the neighboring
molecules to the south (), southeast (), or south-
west (), the output of the molecule's flip-flop (),
or one of the vertical long-distance connection busses

or .
• The output of the molecule () is, as a consequence,

directly connected to the inputs of the multiplexers of
the neighboring molecules to the north, northeast, and
northwest.

• The implementation of sequential systems requires the
presence, in each molecule, of a synchronous memory
element, a D-type flip-flop ().

• Long-distance connections are needed to connect a
molecule to any other molecule in the array. The switch
block (Fig. 18) allows any connection between the
horizontal and vertical busses.

In brief, the core of the molecule remains the one-vari-
able multiplexer, optionally followed by a flip-flop. Inputs
and outputs are programmable and can be connected either
to the immediate neighbors according to a topology suit-
able for binary decision diagrams (where information flows
bottom-up), or to faraway molecules through a network of
perfectly symmetric buses.

All the information necessary for programming the
MUXTREE molecule, that is, the 17 field-programmable
bits that make up the molecular code , is organized
as a 20-bit word () so as to simplify its hexadecimal
representation, and is stored in theconfiguration register

(Fig. 17). From right to left we have:

• () selects or as the control variable
for the MUX multiplexer;

• () selects the output of the multiplexer (combina-
tional) or the output of the flip-flop (sequential) as the
output of the molecule;

• () allows the synchronous set or reset of the flip-
flop;

• the bits () define the connections of the long-
distance busses, as shown in Fig. 18;

• the bits () define the inputs of the multi-
plexer , as shown in Fig. 17.

B. A Molecule with a Space Divider

The information contained in the defines the
logic function of each molecule. To obtain a functional
cell, i.e., an assembly of MUXTREE molecules, we require
two additional pieces of information, defining the physical
position of each molecule within a cell and the presence and
position of the spare columns required by the self-repair
mechanism (Section IV-C).

The mechanism we have adopted consists of introducing
in the FPGA a regular network of automata (state machines)
called space divider[4], [16], [17]. Each vertical or hori-
zontal band of the example of Fig. 19 is an instance of this au-
tomaton. Using the space divider, it is thus possible to divide
the entire space of the FPGA into cells of identical size and
to specify the position of the spare columns. Fig. 19 shows an
FPGA divided into cells of height 3 and width 3, with one out
of every three columns being spare. The polymerase genome

can be inferred from Fig. 19 and consists of a cycle of the
following states:

where represents a corner,a vertical band, an horizontal
band, and a horizontal band associated with a spare column.

More generally, if we use the notation to represent
the state (or the sequence of states)repeated times, a

MANGE et al.: TOWARDS ROBUST INTEGRATED CIRCUITS 527

Fig. 16. Multicellular organization of a specialized Turing machine, a parenthesis checker.

Fig. 17. Logic layout of a MUXTREE molecule, including the configuration registerCREG and the
switch blockSB.

cell of height and width will be defined by the following
polymerase genome:

where the presence of spare columns will be indicated by
replacing one or more occurrences ofby .

The details of the design of the space divider are described
elsewhere [4].

C. A Molecule with Fault Detection

The specifications of the molecular self-repair system
must include the following features.

• It must operate in real time.
• It must preserve the memorized values, that is, the state

of the D-type flip-flop contained in each molecule.
• It must assure the automatic detection of a fault (self-

test), its localization, and its repair (self-repair) at the
molecular level.

528 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000

Fig. 18. Detailed architecture of the switch blockSB.

• It must involve an acceptable overhead.
• In case of multiple faults (too many faulty molecules),

it must generate a global signal , which acti-
vates the suppression of the cell and starts the self-re-
pair process of the complete organism (Section II-C).

The need to meet all these specifications forced us to adopt
a set of compromises with regard to the fault detection capa-
bilities of the system. A self-repairing MUXTREE molecule
can be divided into three parts (Fig. 20) [4], [17], [18].

• The functional part of the molecule (the multiplexers
and the internal flip-flop) is tested through space re-
dundancy: the logic is duplicated (and) and the
outputs of the two copies compared to detect a fault.
A third copy of the flip-flop () was added to allow
self-repair (i.e., to recover the state of the flip-flop).

• The configuration register () is tested every time
the configuration is entered (and thus on the field but
not on-line). Being implemented as a shift register, it
can be tested using a dedicated test sequence intro-
duced in all the elements in parallel before the actual
configuration of the FPGA.

• Faults on the connections (and in the switch block)
can be detected, but cannot be repaired, both because
they cannot be localized to a particular connection and
because our self-repair system relies on these connec-
tions to reconfigure the array. In the current implemen-
tation, therefore, we decided not to test the connections
directly, a limitation which is in accordance with the
current state of the art [19]. In a future version of our
system, it will be possible to test and repair the connec-
tions using a double rail architecture [20].

The hardware overhead (in terms of silicon area) re-
quired to implement all of the above features (including
both self-test and self-repair) in the current version of the
MUXTREE molecules is estimated to approximately 40%
of the original area.

To meet the specifications, and in particular the require-
ment that the hardware overhead be minimized, our self-re-
pair system exploits the programmable frequency and distri-
bution of the spare columns (Section IV-B) by limiting the

reconfiguration of the array to a single molecule per line be-
tween two spare columns (Fig. 21). This choice allows us to
minimize the amount of logic required for the reconfigura-
tion of the array, while keeping a more than acceptable level
of robustness. This mechanism is also in accordance with the
current state of the art [20].

It should be added that, should the self-repair capabili-
ties of the MUXTREE molecular level be exceeded, a global

signal is generated and the system will attempt to re-
configure at the higher (cellular) level through the process
described in Section II-C.

D. A Molecule's Implementation

While our long-term objective is the conception of very
large scale integrated circuits, we started by realizing a
demonstration system in which each MUXTREE molecule
is embedded into a plastic container [Fig. 22(a)] [4], [16].
These containers can easily be joined to obtain two-dimen-
sional arrays as large as desired [Fig. 22(b)].

The MUXTREE molecule is itself realized using a repro-
grammable off-the-shelf FPGA and is configured to imple-
ment the following subsystems.

• The molecule itself (Figs. 17, 18, and 20), including the
20-bit configuration register , the switch block
for long-distance connections, and the two copies (
and) of the functional part of the element used for
self-test, whose outputs are compared () to deter-
mine if a molecule is faulty.

• Four copies of the automaton used as a space divider
(Fig. 19). The four copies are required to allow each
module to work independently of the presence of
neighbors.

• The logic required to inject a fault in the circuit, in-
cluding an activation circuit (a 4-bit manual encoder,
used to select one out of 16 possible faults, and a push-
button to activate the fault) and the gates required to
force specific lines to a given value, thus simulating the
presence of stuck-at faults.

• A set of seven-segment displays (with the associated
decoders) and light-emitting diodes used to display the
state of the circuit.

E. A Modulo-4 Up–Down Counter

For clarity's sake, we will start with a simple example of ar-
tificial organism, a single cell (Fig. 23) realizing a modulo-4
up–down counter defined by the following sequences:

• for
(counting up);

• for
(counting down).

It can be verified that the two ordered binary decision dia-
grams and of Fig. 23(a) (where each test element
is represented by a diamond with a single input, a “true”
output, and a “complemented” output identified by a small
circle) represent a possible realization of the counter [3], [4].
The leaf elements, represented as squares, define the output

MANGE et al.: TOWARDS ROBUST INTEGRATED CIRCUITS 529

Fig. 19. Example of a space divider (height= 3, width= 3, 1 spare column out of 3);
PG: polymerase genome:C, V, V, H, S, C,

values of the given functions (and in the example)
computed with the following equations:

M (Q1 Q0 + Q1 Q0)

For our design, we decided to implement directly the or-
dered binary decision diagrams on silicon, and to build our
fine-grained basic molecule (MUXTREE) around a test ele-
ment (a diamond). Such a layout can be realized [Fig. 23(b)]
by implementing each test element with a one-variable mul-
tiplexer (the MUXTREE molecule), keeping the same inter-
connection diagram, and assigning the values of the leaf el-
ements to the appropriate multiplexer inputs. The two state
functions and are the outputs of the D flip-flops of the
top row of MUXTREE molecules [diamonds embedded in a
square in Fig. 23(b)] and, carried by the long-distance hor-
izontal and vertical buses, become the control variables for
the multiplexers of the bottom two rows.

The counter can be thus be implemented by an array of
three rows by two columns, that is, by a cell made up of

six MUXTREE molecules. From the multiplexer diagram of
Fig. 23(b) and from the description of the MUXTREE mol-
ecule (Figs. 17 and 18), we can then compute the 17 control
bits of each molecular code, finally generating the s
of Fig. 23(c). The ribosomic genome is, ultimately, the
string of the s of our artificial cell, each
being a word of five hexadecimal digits [Fig. 23(c)].

The manual computation of the molecular code can be
very awkward. Thus, in order to automate this part of the
development, we have developed a graphical tool, the MUX-
TREE editor [4].

Thanks to the conception of the new family of field-pro-
grammable gate arrays MUXTREE, we are therefore able to
realize any given logic system, combinational or sequential,
using a completely homogeneous multimolecular network.
This realization is simplified by the direct mapping of the
ordered binary decision diagrams onto the array.

F. A Shift Binary Decision Machine

In the preceding section, we have shown that an assembly
of six MUXTREE molecules was sufficient to realize a very
simpleunicellular artificial organism: a modulo-4 up–down

530 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000

Fig. 20. A self-testing MUXTREE molecule using space redundancy.

Fig. 21. The self-repair mechanism for an array of MUXTREE
molecules.

counter. Yet our final goal is the development of trulymul-
ticellular organisms, in which each cell is a binary decision
machine similar to the MICTREE cell of Section III-A.
In a first experimental stage, which is the subject of this
section, we designed an artificial cell embedding a special
kind of binary decision machine, ashift binary decision
machine, with a read/write memory capable of storing
36 10-bit micro-instructions for the operative genome
[4]. Assembling two such cells allows us to realize the
simplest multicellular organism, a one-dimensional two-cell
organism (Fig. 24). The specifications of the organism are
those of a modulo-60 counter, which is in fact a subset
of StopWatch (Section III-B). The operative genome
consists of two genes, “ ” and “ ,”
whose execution depends solely on the X coordinate.

The shift binary decision machine is specially designed to
fit into an array of MUXTREE molecules: due to the diffi-
culty of embedding a classic random-access memory (RAM)
in such an array (mainly due to the excessive number of
molecules needed for decoding the RAM address), the ac-
tual program memory, orshift memory, consists of shift reg-
isters implemented using the D-flip-flops of the MUXTREE
molecules.

The final cell [Fig. 25(a) and (b)] presents two 1-bit input
variables (the counter's clock signaland the coordinate

sent by the western neighbor), one 4-bit output variable (the
counter state), and two 1-bit output variables, (the co-
ordinate and the clock signal). Its instruction set and the
corresponding binary formats are shown in Fig. 25(c).

The shift memory requires the use of an instruction down-
counter. The 36 instructions of the program are stored in
the shift register and are continually shifted at each
cycle of the internal clock . Their execution depends on
the state of a logic signal , which detects the state

of the down-counter . We can
then identify the following two modes of operation.

• For , the test () and
assignment () instructions have no effect.

• For , the assignment
instruction () is executed. For

, the execution of the test instruction
() has no effect, while if the
opposite is true () the value (which
indicates the number of instructions not to be executed)
is charged into the down-counter .

As shown in Fig.26, the modulo-60 counter program, i.e.,
the operative genome of the artificial organism, is 36 in-
structions long (to in hexadecimal notation).
The layout of the cell, with one spare column every three
columns, is an array of MUXTREE molecules
(Fig. 27), where the white molecules have no logic func-
tionality but are used exclusively for interconnections. This
structure involves the following hardware resources:

• a 36 10-bit shift memory ;
• a 6-bit down-counter ;
• a 4-bit register to store the state;
• a 1-bit register to store the horizontal coordinate;
• an 8-to-1 test variable multiplexer;
• a 2-to-2 demultiplexer to load a variable;
• a couple of random logic gates.

The ribosomic genome is the sum of the
’s of the 600 active MUXTREE molecules. The

MANGE et al.: TOWARDS ROBUST INTEGRATED CIRCUITS 531

(a)

(b)

Fig. 22. The MUXTREE molecule. (a) Front panel of a demonstration module implementing the
molecule. (b) An array of MUXTREE molecules.

polymerase genome can be inferred from Section IV-B
and has the following form:

The final organism [4], consisting of at least two cells as in
Fig.27, has been successfully simulated thanks to the VHDL
language. Only the self-repair mechanism, both at the cel-
lular and at the molecular levels, is missing from this first

532 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000

(a)

(b)

(c)

Fig. 23. Modulo-4 up–down counter. (a) Ordered binary decision
diagrams for Q1+ and Q0+. (b) Multiplexer diagram using
MUXTREE molecules. (c) Six MUXTREE molecule cell;RG:
ribosomic genome.

Fig. 24. A modulo-60 counter made up of two cells.

realization of an artificial cell based on an array of MUX-
TREE molecules.

(a)

(b)

(c)

Fig. 25. Shift binary decision machine (SBDM). (a) Block
diagram; SMEM: shift memory. (b) Logic diagram;DCNT:
down-counter. (c) Instruction set and binary format.

G. Final Remarks

The main focus of this section was the description of a
new FPGA molecule, called MUXTREE, based on a pro-
grammable multiplexer with the following additions:

• an automaton, the space divider, used to divide the
molecular array into subsets of identical dimensions,
the cells;

• a built-in self-test mechanism capable of detecting, lo-
calizing, and either repairing a faulty molecule at the
molecular level or, should this prove impossible, gen-
erating a signal, which activates the self-repair at
the cellular level.

Any cell made up of MUXTREE molecules satisfies the
three features of the Embryonics project (Section II-D):

MANGE et al.: TOWARDS ROBUST INTEGRATED CIRCUITS 533

multimolecular organization, molecular configuration, and
molecular fault detection. The MUXTREE molecule, itself
realized with a commercial FPGA, was embedded into a
demonstration module, and we showed that an array of
such modules exhibits the two desired properties of cellular
self-replication and cellular self-repair.

The trivial applications of the MUXTREE molecule
are those of unicellular organisms: the genome and the
gene are then indistinguishable and the calculation of the
coordinates is superfluous. The cell is then equivalent to
a hardwired logic system and is defined exclusively by its
ribosomic and polymerase genomes, the operative genome
being superfluous: this is the case of the modulo-4 up–down
counter of Section IV-E, realized with six molecules. The
nontrivial applications are those of multicellular organisms,
in which the cells in an array have different genes: the
genome is then a collection of genes, and the coordinates
become indispensable. The cell is then a binary decision ma-
chine which executes a program equivalent to the operative
genome . In order to minimize the hardware resources,
a possible implementation of a cell is based on a particular
type of binary decision machine, coupled with a shift
memory: this is the case of the modulo-60 counter described
in Section IV-F, realized with 900 molecules. In this last
example, the minimization hardware results in a slowdown
in the execution of the program, since no jumps are possible
and all the instructions have to be accessed sequentially.

The way is thus open for the realization of cells of any
complexity, based on our novel FPGA, i.e., our array of
MUXTREE molecules.

V. CONCLUSION

A. The Trials and Errors of Embryonics

The design and implementation of the demonstration mod-
ules of MICTREE, our artificial cell (Section III-A), and
MUXTREE, our artificial molecule (Section IV-D), are but
milestones on a long road leading to two very different fu-
ture products: the microscopic molecule which will form the
heart of a new self-repairing VLSI circuit (Section V-C), and
the macroscopic molecule, currently under construction, to
be used in the giant BioWatch 2001 project (Section V-C).
We can divide our experimental process into three phases.

In the first (historical) phase [15] our initial project was
based upon a simplified three-level hierarchy, instead of the
four-level hierarchy of Fig. 10. Each artificial cell included a
configuration layer (composed of a processor executing the
artificial genome, calculating the coordinates, and, as a func-
tion of these coordinates, determining the 20-bit gene), and
an application layer (composed of a single multiplexer with
connections controlled by the gene). In practice, our entire
artificial genome was used to determine the functionality of
what is now only one of our artificial molecules. A demon-
stration module, the BIODULE 600, was designed and im-
plemented [15], allowing the experimental verification of the
concepts of Embryonics (self-repair and self-replication) in
very simplified examples.

Fig. 26. Modulo-60 counter operative genomeOG.

Fig.27. Floor plan of the shift binary decision machine (array of
30� 30 = 900 MUXTREE molecules, with a spare column every
third column).

The main drawback of the BIODULE 600 cell was the
lack of balance between the application layer (a multiplexer
with a single control variable) and the configuration layer
(a processor storing and executing the program genome).
The development of a new cell, called MICTREE, consti-
tuted the second phase of the Embryonics project, and was
aimed at correcting this imbalance. In the MICTREE cell, the
application and configuration layers are indistinguishable.
By accepting a reduction in execution speed (the program
is executed sequentially as opposed to multiplexers working
in parallel), we obtain a considerable gain in computation
power (1024 executable instructions per cell instead of a mul-
tiplexer, equivalent to a single test instruction).

The demonstration module implementing the MICTREE
cell revealed two major shortcomings.

534 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000

Table 1
Embryonics Project: Experimental Data. To Simplify, We Omitted in the Calculation of the Complete
Genome the Contribution of the Polymerase Genome (PG)

BIODULE 600

(1) Instructions of the operative genome (OG) are 8 bits wide.

(2) The ribosomic genome (RG) is the configuration string necessary for programming an Actel 1020A FPGA, used to implement the BIODULE 600.

MICTREE

(3) This application is an ongoing work; final results may yet change.

(4) Instructions of the operative genome (OG) are 16 bits wide.

(5) The ribosomic genome (RG) is the configuration string necessary for programming an

Actel 1020B FPGA, used to implement the MICTREE demonstration module.

MUXTREE and NEW MUXTREE

(6) Instructions of the operative genome (OG) are 10 bits wide.

(7) The number of bits of the ribosomic genome (RG) is the product of the number of molecules and the number of bits per molecule (20).

(8) Without spare molecules.

(9) Information of the operative genome (OG) is included in that of the ribosomic genome (RG), where the P

value (bit MC2 of MOLCODE) determines the Q value of the flip-flop, i.e., the bit of the shift memory.

NEW MUXTREE

(10) Ongoing work; final results may yet change.

(11) Instructions of the operative genome (OG) are 12 bits wide.

(12) Information of the operative genome (OG) is included in that of the ribosomic genome (RG), where 8 to 16 bits per MOLCODE may be used to store 8

to 16 bits of the shift memory.

• The finite dimensions of the cell (memory, registers,
etc.) prevented us from implementing digital systems
of any dimension.

• The lack of an automatic built-in self-test system.
In the third phase of the project, we were naturally led to

the design of a new cell with a flexible architecture: a fine-
grained FPGA based on the MUXTREE molecule, was the
answer to this new challenge.

But the demonstration module of the MUXTREE mole-
cule (Section IV-D) will need to be modified to constitute
the elemental unit of future implementations (VLSI circuits

and the giant BioWatch 2001). All the mechanisms involved
in the display of results and the manual injection of faults will
be removed; the principal shortcoming of the MUXTREE
module—the very small memory (1 bit per molecule)—must
be changed radically. To overcome this difficulty, we are de-
signing a mechanism which will allow us to use the 20-bit
configuration register for memory storage, reducing consid-
erably the size of the artificial cell.

In the first three phases of our project, as well as in the
work currently in progress, we have observed the same
fundamental mechanism: linear information within the

MANGE et al.: TOWARDS ROBUST INTEGRATED CIRCUITS 535

Fig. 28. Layout of a 4� 4 array of MUXTREE molecules using a single Xilinx XC 4025 HQ 240
FPGA.

artificial genome configures a two-dimensional physical
substrate—our FPGA—to generate the desired application:

Genome FPGA Application

Table 1 presents experimental data concerning the genomes
of the applications described in [15], in this paper, and those
currently in progress. Ignoring the contribution of the poly-
merase genome (), we can state the following two obser-
vations:

• The ribosomic genome () comprises the major part
of the complete genome; to wit, the configuration string
of the FPGA is of much higher complexity than the ex-
ecuted program (the operative genome,). We note
that with living beings the majority of the genetic ma-
terial also consists of the ribosomic genome.

• The complexity of the ribosomic genomes of the BIO-
DULE 600 and MICTREE elements (the configuration
string of the commercial FPGA) is an order of magni-
tude greater than the ribosomic genomes necessitated

by the elements of the MUXTREE and NEW MUX-
TREE FPGA’s, constructed specifically for the imple-
mentation of the Embryonics project.

In conclusion, we note that configuring (ribosomic
genome) is much more complex than programming (op-
erative genome). The development of an FPGA adapted
to our project diminishes greatly the complexity of the
configuration task.

B. A Scientific Challenge: Von Neumann Revisited

The early history of the theory of self-replicating ma-
chines is basically the history of von Neumann's thinking on
the matter [8], [21]. Von Neumann's automaton is a homo-
geneous two-dimensional array of elements, each element
being a finite state machine with 29 states. In his historic
work, von Neumann showed that a possible configuration
(a set of elements in a given state) of his automaton can
implement auniversal constructorable to build onto the
array any computing machine described in a dedicated part

536 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000

Fig. 29. An artist's rendition of a possible realization of the BioWatch 2001 [Art by Anne Renaud].

of the universal constructor, thetape. Self-replication is then
a special case of construction, occurring when the universal
constructor itself is described on the tape. Moreover, von
Neumann demonstrated that his automaton is endowed with
two major properties:construction universality, the capa-
bility of describing on the tape and building onto the array
a machine of any dimension, andcomputation universality,
the capability of describing and building a universal Turing
machine.

One should be reminded that, in biology, thecell is the
smallest part of the living being containing the complete
blueprint of the being, the genome. On the basis of this
definition, von Neumann's automaton can be considered
as aunicellular organism, since it contains a single copy
of the genome, i.e., the description stored on the tape.
Each element of the automaton is thus a part of the cell,
i.e., amolecule. Von Neumann's automaton, therefore, is a
molecular automaton, and self-replication is a very complex
process due to the interactions of hundreds of thousands of
molecules.

Arbib [22] was the first to suggest a truly “cellular”
automaton, in which every cell contains a complete copy
of the genome, and a hierarchical organization, where each
cell is itself composed of smaller regular elements, the
“molecules”. The Embryonics project is therefore the first

actual implementation of Arbib's concept, as each of its
elements contains a copy of the genome. Each element of
our automaton is thus a cell in the biological sense, and our
automaton is truly amulticellular automaton.

The verification of the property ofuniversal computation,
that is, the design of a universal Turing machine on our mul-
ticellular array, is one of the major ongoing projects in our
laboratory (note that we have already shown in Section III-D
the implementation of aspecializedTuring machine, a
parenthesis checker). The property ofuniversal construction
raises issues of a different nature, since it requires (always
according to von Neumann) that our MICTREE cells be able
to implement organisms of any dimension. This challenge
is met, as shown in Section IV, by decomposing a cell
into molecules and tailoring the structure of cells to the
requirements of a given application.

In conclusion, the original specifications of the historical
automaton of von Neumann will be entirely satisfied after
the implementation of a universal Turing machine on a mul-
ticellular array, and after the realization of the corresponding
cells on our FPGA composed of MUXTREE molecules. The
dream of von Neumann will then become a reality, with the
additional properties of self-repair and real-time operation;
moreover, we envisage the possibility ofevolvingthe genome
using genetic algorithms.

MANGE et al.: TOWARDS ROBUST INTEGRATED CIRCUITS 537

C. A Technical Challenge: Toward New Robust Integrated
Circuits

Keeping in mind that our final objective is the develop-
ment of VLSI circuits capable of self-repair and self-repli-
cation, as a first step, which is the subject of this paper, we
have shown that a hierarchical organization based on four
levels (molecule, cell, organism, population of organisms)
allows us to confront the complexity of real systems (Sec-
tion II). The realization of demonstration modules at the cel-
lular level (MICTREE cells, Section III) and at the molecular
level (MUXTREE molecule, Section IV) demonstrates that
our approach can satisfy the requirements of highly diverse
artificial organisms and attain the two sought-after properties
of self-repair and self-replication.

The programmable robustness of our system depends on a
redundancy (spare molecules and cells), which is itself pro-
grammable. This feature is one of the main original contribu-
tions of the Embryonics project. It becomes thus possible to
program (or reprogram) a greater number of spare molecules
and spare cells for operation in hostile environments (e.g.,
space exploration). A detailed mathematical analysis of the
reliability of our systems is currently under way at the Uni-
versity of York [40], [41].

As we have seen, the MUXTREE molecule (Section IV)
is the main hardware prototype we realized in order to test
the validity of our approach. However, the size of the demon-
stration module used to implement a single MUXTREE mol-
ecule prevents us from realizing systems which require more
than a few logic elements. In the long term, we hope to over-
come this difficulty through the realization of a dedicated
VLSI circuit which will contain a large number of elements;
in the short term, however, such a solution is not yet within
our reach. To obtain a larger number of programmable ele-
ments, we investigated the possibility of exploiting a system
based on an array of Xilinx FPGA’s mounted on a single
printed circuit board and configured so as to implement an
array of MUXTREE molecules [16]. Such a system, while
far from affording the same density as a VLSI chip, would
nevertheless allow us to obtain a much larger number of el-
ements than an array of demonstration modules [Fig. 22(a)],
particularly since we would not be limited to a single MUX-
TREE molecule for each Xilinx chip.

The first step in the design of this system was therefore an
analysis of the number of MUXTREE molecules which can
be realized in a single Xilinx FPGA. To this end, we defined
a layout consisting of a 4 4 array of our logic elements
(Fig. 28). Without attempting any kind of optimization in the
layout of the molecules, we removed the logic dedicated ex-
clusively to the demonstration module and tried to determine
the smallest Xilinx FPGA capable of containing the whole
array. Running our design through the Xilinx routing soft-
ware produced some very disappointing results: we deter-
mined that the smallest FPGA that can hold the entire array
is a XC4025, that is, an FPGA theoretically capable of re-
alizing circuits of up to 25 000 logic gates (many more than
those required by our 4 4 array of molecules). While a
system based on an array of such chips could allow us to

obtain a fairly large array of MUXTREE molecules, and in-
deed would be an interesting intermediate step in the creation
of our VLSI circuit, it is unlikely to allow the realization of
systems requiring hundreds of molecules. One of the next
steps in our project, which we will begin as soon as we are
in possession of a quasidefinitive version of our FPGA, will
be the design of an optimized layout of our cell, to be im-
plemented, in all probability, on an array of Xilinx FPGA’s
of the 6200 family. In fact, this family of FPGA’s, while un-
fortunately discontinued by Xilinx, nevertheless presents a
number of advantages as far as our project is concerned, and
notably the striking resemblance between its elements and
our MUXTREE molecules (which could theoretically allow
us a one-to-one mapping of our molecules to the elements).

To the best of our knowledge, there exists today few
projects, industrial or academic, which aim at integrating
the properties of self-repair and/or of self-replication on
FPGA’s. In the framework of the Embryonics project, a
fine-grained FPGA based on a demultiplexer [4], [23] and a
coarse-grained FPGA based on a binary decision machine
[24] have been developed at the Centre Suisse d'Électron-
ique et de Microtechnique in Neuchâtel (Switzerland). A
fine-grained FPGA based on a multiplexer is also under
development at the University of York (United Kingdom)
[25]. Industrial projects dealing with self-repairing FPGA’s
(without self-replication) are also underway at NEC (Japan)
[20] and at Altera (United States) [31].

In our laboratory, the next major step in the Embryonics
project is the design of the BioWatch 2001, a complex
machine which we hope to present on the occasion of a
major scientific and cultural event which will take place in
the year 2001 in Switzerland. The function of the machine
will be that of a self-replicating and self-repairing watch,
implemented with macroscopic versions of our artificial
cells and molecules (Fig. 29).

A far-future technical application of the Embryonics
project is in the domain of nanotechnology [30]. The con-
cept of a self-replicating machine, or “assembler,” capable of
arranging “the very atoms” was first introduced by Drexler
as a possible solution to the problem of the increasing minia-
turization of VLSI circuits: as manufacturing technology
advances beyond conventional lithography, some new,
accurate, and low-cost approach to the fabrication of VLSI
circuits is required, and self-replicating assemblers could be
a remarkably powerful tool for this kind of application.

D. A Biological Challenge: Artificial and Natural Genomes

In our Embryonics project, the design process for a multi-
cellular automaton requires the following stages.

• The original specifications are mapped onto a homo-
geneous array of cells (binary decision machines with
their associated read/write memory). The software
(a microprogram) and the hardware (the architecture
of the cell) are tailored according to the needs of
the specific application (Turing machine, electronic
watch, random number generator, etc.). In biological
terms, this microprogram can be seen as theoperative

538 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000

Fig. 30. The artificial genome of the parenthesis checker.

genome , or, in other words, theoperative part
of the final artificial genome. In the example of our
specialized Turing machine, the parenthesis checker
(Section III-D), the operative part of the genome
consists of (Fig. 30):coordinate genes(,

,), which handle the
computation of the coordinates and the calculation
of the initial conditions, similar to thehomeboxes
or HOX genesrecently found to define the general
architecture of living beings [26];switch genes(
and tests), used to express the functional genes
according to the cell's position in the organism (that is,
according to the value of the cell's coordinates) [27];
and functional genes(,), which
effect the operative functions of our artificial organism
(i.e., calculating the head and tape states), analogous
to the genes which constitute the coding part of the
natural genome.

• The hardware of the cell is implemented with a
homogeneous array of molecules, the MUXTREE
molecules. Spare columns are introduced in order to
improve the global reliability. With our artificial cell,
being analogous to the ribosome of a natural cell, the
string of the molecular codes s can be con-
sidered as theribosomic genome or the ribosomic
part of the final genome.

• The dimensions of the final molecular array, as well as
the frequency of the spare columns, define the string of
data required by the finite state machine, the space di-
vider, which creates the boundaries between cells. As
this information will allow to create all the daughter
cells starting from the first mother cell, it can be con-
sidered as equivalent to thepolymerase genome or
thepolymerase partof the genome.

With respect to this design process, the programming of
the molecular array of MUXTREE elements takes place in
reverse order.

• The polymerase genome is injected in order to set the
boundaries between cells.

• The ribosomic genome is injected in order to configure
the molecular FPGA and to fix the final architecture of
the cell.

• The operative genome is stored within the read/write
memory of each cell in order for it to execute the spec-
ifications.

The existence of these different categories of genes is the
consequence of purely logical needs deriving from the con-
ception of our multicellular automaton.

One of the most promising domains of molecular
biology, genomics, is the research of a syntax of the
genome, that is, rules dictating the ordering of different
parts of the genome, the genes [28], [29]. One can
imagine the artificial and the natural genomes sharing
common, invariant properties. Should this indeed be the
case, the Embryonics project could contribute to biology
itself [32], [42].

ACKNOWLEDGMENT

The authors are grateful to A. Renaud for her rendition of
a possible realization of BioWatch 2001, to A. Herzog for the
photographs [Figs. 14(b) and 22(b)], and to A. Badertscher
for the implementation of the MUXTREE molecule and of
the MICTREE cell.

REFERENCES

[1] L. Wolpert, The Triumph of the Embryo. New York: Oxford Univ.
Press, 1991.

[2] M. Nicolaidis, “Future trends in online testing: A new VLSI design
paradigm?,”IEEE Design Test Comput., vol. 15, no. 4, p. 15, 1998.

[3] D. Mange,Microprogrammed Systems: An Introduction to Firmware
Theory, London, U.K.: Chapman & Hall, 1992.

[4] D. Mange and M. Tomassini, Eds.,Bio-inspired Computing Ma-
chines: Towards Novel Computational Architectures, Lausanne,
Switzerland: Presses Polytechniques et Universitaires Romandes,
1998.

[5] D. Mange, M. Goeke, D. Madon, A. Stauffer, G. Tempesti,
and S. Durand, “Embryonics: A new family of coarse-grained
field-programmable gate array with self-repair and self-reproducing
properties,” inToward Evolvable Hardware, E. Sanchez and M.
Tomassini, Eds, Berlin, Germany: Springer-Verlag, 1996, vol. 1062,
pp. 197–220.

[6] S. Wolfram,Theory and Applications of Cellular Automata, Singa-
pore: World Scientific, 1986.

[7] P. D. Hortensius, R. D. McLeod, and B. W. Podaima, “Cellular au-
tomata circuits for built-in self-test,”IBM J. Res. Develop., vol. 34,
no. 2/3, pp. 389–405, 1990.

[8] J. von Neumann,The Theory of Self-Reproducing Automata, A. W.
Burks, Ed. Urbana, IL: Univ. of Illinois Press, 1966.

[9] D. Mange, D. Madon, A. Stauffer, and G. Tempesti, “Von Neumann
revisited: A turing machine with self-repair and self-reproduction
properties,”Robot. Auton. Syst., vol. 22, no. 1, pp. 35–58, 1997.

MANGE et al.: TOWARDS ROBUST INTEGRATED CIRCUITS 539

[10] M. L. Minsky, Computation: Finite and Infinite
Machines. Englewood Cliffs, NJ: Prentice-Hall, 1967.

[11] E. R. Berlekamp, J. H. Conway, and R. K. Guy, “What is life?,”
in Winning Ways for Your Mathematical Plays. New York: Aca-
demic, 1982, pp. 817–850.

[12] S. B. Akers, “Binary decision diagrams,”IEEE Trans. Comput., vol.
27, pp. 509–516, June 1978.

[13] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary
decision diagrams,”ACM Computing Surveys, vol. 24, no. 3, pp.
293–318, 1992.

[14] C. Meinel and T. Theobald,Algorithms and Data Structures in VLSI
Design., Berlin, Germany: Springer-Verlag, 1998.

[15] D. Mange, E. Sanchez, A. Stauffer, G. Tempesti, P. Marchal, and C.
Piguet, “Embryonics: A new methodology for designing field-pro-
grammable gate arrays with self-repair and self-replicating proper-
ties,” IEEE Trans. VLSI Syst., vol. 6, pp. 387–399, Sept. 1998.

[16] G. Tempesti, “A self-repairing multiplexer-based FPGA inspired by
biological processes,” Ph.D. dissertation, EPFL, Lausanne, Switzer-
land, 1998.

[17] G. Tempesti, D. Mange, and A. Stauffer, “Self-replicating and
self-repairing multicellular automata,”Artif. Life, vol. 4, no. 3, pp.
259–282, 1998.

[18] “A robust multiplexer-based FPGA inspired by biological systems,”
J. Syst. Architecture, vol. 43, no. 10, 1997.

[19] R. Negrini, M. G. Sami, and R. Stefanelli,Fault Tolerance Through
Reconfiguration in VLSI and WSI Arrays. Cambridge, MA: MIT
Press, 1989.

[20] A. Shibayama, H. Igura, M. Mizuno, and M. Yamashina, “An au-
tonomous reconfigurable cell array for fault-tolerant LSIs,” inProc.
44th IEEE Int. Solid-State Circuits Conf., San Francisco, CA, Feb.
1997, pp. 230–231 and 462.

[21] M. Sipper, “Fifty years of research on self-replication: An overview,”
Artif. Life, vol. 4, no. 3, pp. 237–257, 1998.

[22] M. A. Arbib, Theories of Abstract Automata. Englewood Cliffs,
NJ: Prentice-Hall, 1969.

[23] P. Marchal, C. Piguet, D. Mange, A. Stauffer, and S. Durand,
“Embryological development on silicon,” inArtificial Life
IV. Cambridge, MA: MIT Press, 1994, pp. 365–370.

[24] P. Nussbaum, B. Girau, and A. Tisserand, “Field programmable pro-
cessor arrays,” inEvolvable Systems: From Biology to Hardware,
M. Sipper, D. Mange, and A. Perez-Uribe, Eds, Berlin, Germany:
Springer-Verlag, 1998, vol. 1478, pp. 311–322.

[25] C. Ortega and A. Tyrrell, “MUXTREE revisited: Embryonics as a
reconfiguration strategy in fault-tolerant processor arrays,” inEvolv-
able Systems: From Biology to Hardware, M. Sipper, D. Mange, and
A. Perez-Uribe, Eds, Berlin, Germany: Springer-Verlag, 1998, vol.
1478, pp. 206–217.

[26] J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M.
Weiner,Molecular Biology of the Gene, 4th ed. Menlo Park, CA:
Benjamin-Cummings, 1987.

[27] S. F. Gilbert,Developmental Biology, 3rd ed. Sunderland, U.K.:
Sinauer Associates, Inc., 1991.

[28] D. Duboule, “The evolution of genomics,”Science, vol. 278, p. 555,
Oct. 24, 1997.

[29] S. Bentolila, “A grammar describing “biological binding operators”
to model gene regulation,”Biochimie 78, pp. 335–350, 1996.

[30] R. C. Merkle, “Making smaller, faster, cheaper computers,”Proc.
IEEE, vol. 86, pp. 2384–2386, Nov. 1998.

[31] C. F. Lane, S. T. Reddy, and B. I. Wang, “Means and apparatus to
minimize the effect of silicon processing defects in programmable
logic devices,” U.S. Patent 5 592 102, Oct. 19, 1995.

[32] M. Barbieri, “The organic codes: The basic mechanism of macroevo-
lution,” Rivista di Biologia/Biology Forum 91, pp. 481–514, 1998.

[33] K. Roy, Ed., “A D&T roundtable: Online test,”IEEE Design Test
Comput., vol. 16, no. 1, pp. 80–86, Jan.–Mar. 1999.

[34] Y. Zorian, “Testing the monster chip,”IEEE Spectrum, vol. 36, no.
7, pp. 54–60, July 1999.

[35] G. D. Watkins, “Novel electronic circuitry,”Proc. IEEE, vol. 86, p.
2383, Nov. 1998.

[36] P. Kuekes, “Molecular manufacturing: Beyond moore's law,”
in Proc. Field-Programmable Custom Computing Machines
(FCCM'99), Napa, CA, Apr. 1999.

[37] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, “A defect-
tolerant computer architecture: Opportunities for nanotechnology,”
Science, vol. 280, no. 5370, pp. 1716–1721, June 12, 1998.

[38] R. F. Service, “Organic molecule rewires chip design,”Science, vol.
285, no. 5426, pp. 313–315, July 16, 1999.

[39] S. R. Park and W. Burleson, “Configuration cloning: Exploiting reg-
ularity in dynamic DSP architectures,” inProc. ACM/SIGDA Int.
Symp. Field Programmable Gate Arrays (FPGA'99), Monterey, CA,
Feb. 1999, pp. 81–89.

[40] C. Ortega and A. Tyrrell, “Reliability analysis in self-repairing
embryonic systems,” inProc. 1st NASA/DOD Workshop Evolvable
Hardware, Pasadena, CA, July 1999, pp. 120–128.

[41] , “Self-repairing multicellular hardware: A reliability analysis,”
in Advances in Artificial Life, D. Floreano, J.-D. Nicoud, and F. Mon-
dada, Eds., Berlin, Germany: Springer-Verlag, 1999, vol. 1674, pp.
442–446.

[42] R. Gordon, The Hierarchical Genome and Differentiation
Waves. Singapore and London, U.K.: World Scientific and
Imperial College, 1999.

[43] D. Mange, M. Sipper, and P. Marchal, “Embryonic electronics,”
BioSystems, vol. 51, no. 3, pp. 145–152, 1999.

[44] M. Sipper, D. Mange, and E. Sanchez, “Quo vadis evolvable hard-
ware?,”Commun. ACM, vol. 42, no. 4, pp. 50–56, Apr. 1999.

[45] E. Sanchez, M. Sipper, J.-O. Haenni, J.-L. Beuchat, A. Stauffer, and
A. Perez-Uribe, “Static and dynamic configurable systems,”IEEE
Trans. Comput., vol. 48, pp. 556–564, June 1999.

Daniel Mange (S’68–M’69) received the M.S.
and Ph.D. degrees from the Swiss Federal Insti-
tute of Technology, Lausanne, Switzerland.

Since 1969, he has been a Professor at the
Swiss Federal Institute of Technology. He was
a Visiting Professor at the Center for Reliable
Computing, Stanford University, Stanford, CA,
in 1987. He is Director of the Logic Systems
Laboratory, and his chief interests include
firmware theory (equivalence and transformation
between hardwired systems and programs),

cellular automata, artificial life, and embryonics (embryonic electronics).
He is an author or coauthor of several scientific papers in these areas, as
well as ofMicroprogrammed Systems: An Introduction to Firmware Theory
(London, U.K.: Chapman & Hall, 1992). He was Program Cochairman of
the First International Conference on Evolvable Systems: From Biology to
Hardware (ICES96), held in Tsukuba, Japan, and General Chairman of the
Second International Conference on Evolvable Systems: From Biology to
Hardware (ICES98), held in Lausanne in September 1998.

Moshe Sipper (S’87–M’89–SM’98) received
the B.A. degree in computer science from the
Technion—Israel Institute of Technology and
the M.Sc. and Ph.D. degrees from Tel Aviv
University, Israel.

He is a Senior Researcher in the Logic
Systems Laboratory, Swiss Federal Institute of
Technology, Lausanne, Switzerland. His chief
interests involve the application of biological
principles to artificial systems, including
evolutionary computation, cellular computing,

bio-inspired systems, evolvable hardware, complex adaptive systems,
artificial life, and neural networks. He has published more than 70 research
publications in these areas, as well as the bookEvolution of Parallel
Cellular Machines: The Cellular Programming Approach(Heidelberg,
Germany: Springer-Verlag, 1997). He was Program Chairman of the
Second International Conference on Evolvable Systems: From Biology to
Hardware (ICES98), held in Lausanne in September 1998.

André Stauffer (S’68–M’69) received the
Diploma in electrical engineering and the Ph.D.
degree from the Swiss Federal Insitutute of
Technology, Lausanne, Switzerland.

He spent one year as a Visiting Scientist at
the IBM T.J. Watson Research Center, Yorktown
Heights, NY, in 1986. He is a Senior Lecturer
in the Department of Computer Science, Swiss
Federal Insutitute of Technology. In addition
to digital design, his research interests include
circuit reconfiguration and bio-inspired systems.

540 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000

Gianluca Tempesti (S’92–M’98) received the
B.S.E. degree in computer engineering from
Princeton University, Princeton, NJ, in 1991, the
M.S.E. degree from the University of Michigan,
Ann Arbor, in 1993, and the Ph.D. degree
from the Swiss Federal Institute of Technology,
Lausanne, Switzerland, in 1998, with a thesis
based on the development of a self-repairing
multiplexer-based FPGA.

Since 1994, he has been a Teaching and
Research Assistant with the Logic Systems

Laboratory, Department of Computer Science, Swiss Federal Institute
of Technology. His research interests include self-test and self-repair,
programmable logic circuits, processor design, and parallel computer
architecture.

MANGE et al.: TOWARDS ROBUST INTEGRATED CIRCUITS 541

