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A Sequence Predicting CA3 Is a Flexible Associator

That Learns and Uses Context to Solve
Hippocampal-Like Tasks

William B Levy

Departiments of Neurological Surgery and of Psychology,
University of Virginia Health Sciences Center,
Charlottesville, Virginia

ABSTRACT:  The model discussed in this paper is, by hypothesis, a min-
imal, biologically plausible model of hippocampal region CA3. Because
cognitive mapping can be viewed as a sequence prediction problem, we
qualify this model as a successful sequence predictor, Since the model
solves problems which require the use of context, the maodel is also able
to learn and use context. The model also solves configural learning prob-
lems of which, at least one, requires a hippocampus. Thus, by solving se-
quence problems, by solving configural learning problems, and by creat-
ing codes for contexl, this model provides a computational unification of
hippocampal functions which are often viewed as disparate.
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INTRODUCTION

the hippocampus. Our goal is to create and understand the simplest such
model that demonstrates the cognitive/behavioral abilicies ascribed to the
hippocampus. By definition, the simplest nerwork is one with minimal
properties, and, for us, all of these properties must be hiological. As we be-

gin to understand this minimal model of the hi ppecampus, we hope to
progress to models in which the neurons correspond ro biological neurons
in cver grearer detail. We expect that enhancing the biological “reality” of
the ncural-like networks will allow us to predice acrual neuronal firing par-
terns. For now, however, we only seek the insights provided by minimal
models. Thus, we are presently trying to understand how the connectivity
of the hippocampus and its well-known physiology contribute to the roles
played by the mammalian hippocampus in learning and memory.

Our candidare minimal models are tested against behavioral paradigms
thar reflect contemporary cognitive/behavioral theories of the hippocam-
pus: the declarative nemory system described by Cohen and Eichenbaum
{1993); the context learning systems described by Hirsh {1974), Kesner
and Hardy (1983), and Gray (1982); the conﬁgural learning system as de-
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We are studying biologically plausible, neural-like network models of .

scribed in a revised theory by Rudy and Sutherland
{19935); and the cognitive mapping theory described by
(O’Keefe and Nadel (1978). Although our work is not
yet cemplete, only a small set of hippocampal proper-
ties seems necessary for the minimal model to solve sev-
eral tasks thac arc, arguably, paradigmaric for these the-
eries of hippocampal function.

THE MODEL

Gross Features of the Model

We tmitially proposed (Levy, 1989; Levy et al., 1990)
and studied a model with picces corresponding to hip-
pocampal regions CA1 and CA3. Hippocampal region
CA3 and the dentate gyrus were, and are, viewed as re-
coders of cerebral cortical represenrations; CA1 (work-
ing 1n concerr with the subiculum and entorhinal cor-
tex, [ would say roday) is viewed as the decoder (see also
McClelland and Goddard, 1996; Hassclmo et al., 1996
both this issue). This decoder mediates the adjustments
of cerebral cortical representations as direcred by the
adaptively formed CA3 codes. However even now, mod-
cling such a decoder requires many arbitrary decisions
as to the physiologies of CA1, subiculum, and entorhi-
nal cortex. There is always the rempration 1o fix up a
pootly performing CA3 with a very deverly designed,
but biologically questionable, decoder. Morcover, it is
the CA3 portion of the model that is really selving the
problems described here. As a result, viewing the net-
work output through the CA1 decoder clouds our un-
derstanding of how the CA3 model acrually solves prob-
lems. Thus, we put the CAl-subiculum-entorhinal
cortex (EC) compurtation to ene side and just concen-
trate on studics of the CA3 model (see Fig. 1a).

Instead of constructing a CAl-subiculum-EC neural
decoder, we interpret the activity parterns of CA3 using
the simplest decoder that we can think of: We comparc
a CA3 state vecror (CA3’s activity at one time step dur-
ing testing) with all the network-creaced code words (a
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code word is 2 statc vector elicited on the last crial of training);
the cosine of the angic between a test-elicited curpur and cach
driven state vector at the end of learning quantifies the mathe-
matical comparisons. For each successive outpur during testing,
the input pattern that drives the network state producing this
maximal cosine value is identified as the decoded output of the
network, Thus, the model—in a purcly self-supervised fashion—
creates a set of code words {firing parterns) during the learning
trials in which each code word corresponds to a different input
pattern of a sequence.

In terms of the input to the CA3 model, we have functionally
combined into a single input what is in fact the dual input of the
dentate gyrus and the layer II cntorhinal input to CA3. This scems
sensible in order to keep the modd simple and because the dentate
itself is activared by the same layer |l inputs that excite CA3 dircetly.
Moreover, we, like others {e.g., 'I'reves and Rolls, 1991), arc willing
to hypothesize that the sparse connecriviry from the dentate o CA3,
when combined with the cnrorhinal input to CA3, leads to extremely
sparse but powerful driving of a few CA3 neurons.

Microscopic Features and Functional
Characteristics

Table 1 summarizes the fundamental properties of the net-
work with Table 3, making the implementation of these proper-
tics precise.

"F'he fundamental microscopic properties—the anatomy of the
network and the physiology of the neurons and synapses—were
selecred based on three ideas: simplicity {e.g., McCulloch-Pitrs
neurons); observed physiology (c.g., the direction of temporal ofl-
set of the associative modificaden rule, the sparse connectivity of
the network, and the low acrivity levels of the network); and a
third idea that might not be so obvious. We wanted to show, in
an unambiguous fashion, the critical microscopic properties that
allow the nerwork to create codes that are suitable for solving dif-

TABLE 1.

Fundamental Network Properties™

1. Neurons are McCulloch-Pitts-iype threshold elements (one
time step delay, no memory, and excitation is a weighted
sum of the input)

2. Synapses modify associatively based on a local Hebbian-
type rule and have a time-spanning, associative capability
that, at least, equals the neuronal delay

Most connections are excitatory

-

Recurrent excitation is sparse and randomly connected
Inhibitory neurons approximately control net levels of
activity

bkl

=

Recurrent excitation more strongly contributes to network
activity than do external inputs
7. Activity is low but not foo low

*Property 1 derives from a desire for simplicity. Our knowledge of the
hippocampus inspires properties 2-7. Properties 4-7 add to the a pri-
ori randommness of the network and lis sequence coding tendencies.

ficult sequence prediction problems. Thercfore, we denied the
nerwork certain biologically realistic microscopic properties that
should, in fact, be very useful for solving sequence prediction
problems (c.g,, a long-time-spanning assoclative modification rule
and capacitative neurons). In particular, we wanted to show that
the long-time-spanning praperties of the system arise as much

from the sparse but powerful recurrent circuitry as from the timrn

spans of necural computations and N-methyl-D-aspartate
(NMDA) receptor events.

Randomness in the naive, inexpericnced nerwork was an ex-
plicic goal of the nerwork design. We were impressed by the ad-
vantages of maximum entropy—based prediction {Levy, 1983,
1989; Levy and Delic, 1993). This philosophy, when combincd
with the view of the hippocampus as the associator of last resort,
implied minimal a priori coding biases as desirable and leading
to enhanced nerwork performance (Levy, 1989). Thus, proper-
ties 4—7 of Table 1 are seen as enhancing the rendency of the
najve network to produce random patterns. And there is another
important motivation for random connectivity.

‘I'he sparse connectivity of the network {see Fig. 1b} was scen
as fundamental for producing sequence codes. Symmetric ner-
works (i.e., the condition where reciprocal synapses are equal, wij =
wii) will tend 1o form stable actractors (Cohen and (Grossberg,
1983; Hoptield, 1982}. Becausc we wanted a dynamic codc to re-
flect the dynamic changes of the inpur, we saw great advantage in
using the sparse connectivity of the actual hippocampus as a de-
sign for our network. In particular, randomly made connections
in such a sparse network lead to very few reciprocal connections.
With few reciprocal conncetions, a CA3-like model will be largely
asymmetric. Therefore, this connectivity blases the network to pro-
duce sequences {in contrast to high connectivity and symmenry,
which tends to produce stable attractors).

The production of such sequences was confirmed in our carly
studies (Minai and Levy, 1993a,b, 1994). In these studics we
learned how to sct the parameters of the network to produce ran-
dom sequences and to avoid cyclic behavior {oscillations). We alse
discovered that there are certain technical problems working with
such small networks in terms of the variance in synaptic connee-
tivity and in tcrms of sustainable activity levels. As a result, we
enforced a rule in the construction of these nerworks in which
the random connections are made such that each neuren receives
its full share of connections and we avoid activity levels thar are
too low. Presumably, with larger networks and more conncetiens,
it would not bc necessary to use such an ad hoc rule, and we
could go to much lower activity levels.

So that the ncowork could create its own codes in a manner
as flexible as possible, we used a local associative synaptic modi-
ficatien rule (Levy, 1982), we used inputs that excite many fewer
neurens than recurrent excitation, and we allowed feedback in-
hibition to regulare activiey levels in a rather poor way. That is,
a divisive shunting inhibitien is appropriately delayed; as a result
activity levels are constantly fluctuating (Minai and  Levy,
1993a,b), unlike pure competitive networks.

The variables in this minimal model are summarized in "l'able
3. Recently we have been using 512 primary neurens in these net-
works and one interneuron. The linear intcrncuron combines
feedforward and feedback excitation to produce a shunting inhi-
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a. Simplified Hippocampal Model
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FIGURE 1. The basic model. a: The model consists of an input
layer which should be viewed as a combination of the entorhinal
cortex and dentate gyrus and which is modeled as an excitation that
sparsely activates CA3. Accompanying the feedforward excitation is
a proportional feedforward inhibition. The strong input to the net-
work is the recurrent excitation which is alse accompanied by a feed-
back inhibition. The output of the network is the state of the exci-
tatory CA3 cells themselves. b: The recurrent excitatory synapses of
CA3 are modeled as being sparse and randomized.

bition [{Furman, 19635; Grossberg, 1976; Rose, 19773; scc the de-
nominator of somate-dendritic excitation/inhibition cquation of
Tablc 3].

We have tried connecrivitics from 5% to 20%; the bulk of the
work uses a 10% probability of interconnect from one ncuron
and another neuron. This, by some approximations, might be the
degree of interconnection that would oceur int a narrow strip of
(A3 perhaps .5 mm wide in the septotemporal direction.

Naturally, local associative modification is used (e.g., Levy and
Steward, 1979). More than one equation has been tried (Minai
and Levy, 1993c), but the bulk of the work uses the postsynap-
tic rule shown in Table 3,

The rime offser of synaptic association (presynaptic activity
precedes postsynaptic activity) is qualitarively consistent with ex-
perimental observadons (levy and Steward, 1983; Gustafsson and
Wigstrom, 1986) and biephysical models {ITolmes and Levy,
1990). Howcver, it is arguably not of the appropriare longevity;
it alt depends on the analogical meaning of ane time seep. (If u
time step is a theta cycle, then the time span of associativity is
about right; if a time step is 2 ncuron’s RC rime constant, then

the associative span is too short.} As already mentioned, the rea-

son for choosing such 2 short cime span (i.e., onc time siep of the
simulation) is to show the importance of the ncuronal circuitry
in ereating appropriate codes for solving time-spanning problems
that exceed the time span of the synaptic modification rule.

The rate constant (€} of synaptic modification was set to a
targe valuc for one trial learning, while in all other cxperiments
the valucs of .01-.05 were used. Presumably, such a rate constant
is controllable by arousal levels in a behaving animal.

In scteing up these networks, there are three functional vari-
ables (Table 2) to which we pay special artention: activicy—both
its average value and how much it fluctuates—sequence length
memory capacity, and firing patrerns called local context neurons
{(to be described later). In fact, these networks are rather difficulc
to paramcterize. Getting the desired activity levels, memory ca-
pacity, and firing patterns takes a great deal of testing and ad-
justing of paramectcrs.

‘T'he desired activity levels that we are able to achieve varies as
a funcrion ef the number of neurons. As we put more neurons
in the neowork, we can go to lower and lower levels of activity.
Currently with 512 neurons, the neowork typically runs at activ-
ity levels beoween 6% and 15% of neurons firing per time step.

‘The threshold for cell firing (8) and the size of the inhibirory
constants (Ky and Kg) are the variables most often adjusted
produce the desired activity levels that avoid severe oscillations of

TABLE 2.

Functional and Actual Variables in OQur Network Model*

Typical
desired
Variable form
A. Functional variables
a. Average activity Low
b. Activity fluctuations Low
c. Sequence Jength memory capacity Large
d. Average lifetime of local context neurons Large
2. Speed of learning Fast

B. Actual variables of the minimal model

. Number of neurons

. Percent commectivity

. Time span of synaptic associations

. Threshold to fire

. Feedback inhibition weight constant

. Feedforward inhibition weight constant

. Rate constant of synaptic modification and
number of learning, trials

8. The input code

R R

~1 3 o

*The functional variables (A) of the network are contralled by the ac-
tual variables (B}, The number of neurons (1) depends on how much
computer power is available; more is better. Connectivity (2} and time
span (3} have not been systematically investigated, but small changes
have not significantly altered the network’s performance. Speed of
learning (e), is contrelled by actual variable (7). The remaining actual
variables 3-6 and 8 control functional variables a through d.
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TABLE 3.

Summary of Network Computations®

Somato-dendritic excitation /inhibition
z_ ?.{h}'(.‘ijfzf'(t - ])

pl) = e - . _—_—
I Z H]ffc.l}'z.i(t -1+ K }__, x{f) + Kr z z{t = 1)

Output
i) = { Lify() = Borif x(8) = 1;
() otherwise
Typical synaptic modification rule
wil ) — wylt — 1) + ezi{d) Tz;(t — 1) — wy(f — 1))

*The variables of the network and the equations relating these vari-
ables. Inhibition is incorporated as a divisive, shunting form.

Definitions

¥ = net excitation of ; x; = external input to f; z;  recurrent input 7;
z; = vutput to neuron f; K; = feedforward inhibition scale constant;
Ky = feedback inhibition scale constant; C; = {0,1} variable of connec-
tivity, kept constant once selected; wy = the excilatory wei ght, neuron

ito j; € rate constant of synaptic modification; f = fime.

average activity and that allow the network to spontaneously gen-
eraic activity even in the absence of inpur.

Why Is This a CA3 Model?

In some sensc cthis recurrent excitatery model applies to many
subregions of the hippocampus and of the cercbral cortex; this is
not a problem because many of these areas might be viewed as
similar from a computational perspective. However, to be very
speculative, it is the quantitative combination of two features that
distinguishes a CA3 model from models of other regions: 1) the
relatively broader, sparser dispersal of recurrent random connec-
tions, and to a larger extent than elsewhere; 2) the determination
of neuronal firing by recurrent activation much more so than by
the cxternal input.

THE PROBLEMS SOLVED TO DATE

A hallmark of our approach is the creation of toy problems
which serve as paradigmatic abstractions for real world problems
that the hippocampus helps solve. The following problems, listed
in Table 4, are solved by the nerwork.

Spontaneous Rebroadcast

Inherent in the idea of the hippocampus serving as a tempo-
rary, intermediate storage depot of cpisodic memory is the re-
quirement for a mechanism by which the hippocampus would
teach the cerebral cortex. Spontancous rebroadeast of a learned
scquence is the mechanism that is most obvicus to us.

‘I'he idea of one portion of cortex teaching another portion of
cortex during sleep has been around for over 30 years {(for early
citations, see Hennevin et al., 1995). Morc recently the results of
Pavlides and Winson (1989) and the results of Wilson and
McNaughton (1994) provide strong cvidence that the hip-
pocampus would tcach the cerebral cortex during sleep. Similarly,
Chrobak and Buzsiki (1994) have obscrved sharp wave-associ-
ated cell firing in the hippocampus, and they suggest that this fir- '
ing is the process by which the hippocampus teaches the en-
torhinal cortex.

Spontancous rebroadcast of a learned sequence occurs when
the network is allowed to randomly generate patterns. Indeed,
this was one of our first results {Minai and Levy, 1993¢} which
we are continuing to follow up with more detailed biological mod-
els (August and levy, In preparation).

One-Trial Learning

Episodic learning is often a one-trial affair. When che rare of
synaptic maodification is made large enough (c.g., 0.8}, then the
system will learn short scquences in a single trial (Minai and Levy,

1993¢),

Simple Sequence Completion

The simple sequence completion problem is the easiest test of a
nerwork to sce if it has learned a sequence. This problem is analo-
gouss to the pattern completion problem, but the network’s outpur
must be temporally ordered as appropriate to the input uscd for rest-
ing. Most simply, we test by giving the first pattern of a sequence
and then look for the rest of the pacterns in the proper order.

" For example, consider the 12-pattern sequence 1 of Figure 2b,
Let the network be given learning trials for just the sequence of
patterns ABCaByGHIKL. Then, give it just patrern A and see
what happens. Perfect sequence completion would see produc-

TABLE 4.

Ten Probilems Solved by Our Minimal Network Model”

. Simple sequence completion

. Spontanecus rebroadcast

. One-trial learning

Jump-ahead recall (faster than real time)

Ol g @ N

Scquence completion with an ambiguous subsequence
(context past)

. Goal finding without search {context future)

. Piccing together appropriate subsequences

. Transverse patterning (context present)

. Finding a short cut '
10. Transitive inference

WSO =3 o

*We designed input codes that correspond to these ten problems, and
the CA3 model solved these problems. Transverse patterning is a con-
figural learning problem as are transitive inference {9) and one version
of goal finding (6). Problems 3, 6, and 7 make obvious use of contexi,

but, as indicated, these are different kinds of context.
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FIGURE 2. Sequences to be learned in two environments. a; The

looping path input sequence. This sequence of 40 patterns has an
identical pair of subsequences (6—10 and 26-30). Learning trials con-
sist of the complete 40-pattern sequence and then resetting the net-
work with a noisy input. b: Two overlapping sequences can be
learned individually. The two 12-pattern sequences share a common
subsequence of three patterns (@, 8,%). During learning, these two
sequences were randomly presented with a noisy pattern between the
end of one trial and the beginning of the next one.

tion of the remaining 11 patterns in the scquence. The network
has shown such behavior under many circumstances (e.g. Minai

and Levy, 1993c).

Jump-Ahead Recall

Sometimes {c.g., in cognitive mapping), it might be useful ro
picture a goal at the end of a sequence while still at the start po-
sition, By adjusting the inhibition in the network, sequence com-
pletion in responsc to a test input can be replaced by jump-ahead
recall thar either skips through the sequence missing many pat-
terns, moves quickly through the sequence, or just skips to the
end of the sequence (August and Levy, 1996; Prepscius and Levy,
1994).

Finding a Short Cut

Abbott and Blum (1996} showed that their model of the hip-
pocampus could gradually shorten its path from start o goal.
Using the looping path problem (Fig. 2a), our nerwork shows an
ability to predicr a short cut, but not by virtue of gradual learn-
ing (Levy et al., 1995). As in the picture of the leoping sequence
{Fig. 2a), the rraining input is a 40-pattern sequence that runs
back over itself. When a pattern completion test is given (patrern
Lis the input and then nothing), the network produces a sequence
that avoids the loop. That is, the network creates a sequence that
goes through the overlapping region and then after a slight hesi-
tation runs out the wil to pattern 40.

Subsequence Disambiguation

Using a nonlocal learning rule and a rather overconnected net-
work, Fukushima (1973} showed that there was a neurally in-
spired neework that could solve the sequence disambiguation
preblem. ‘This class (problem 5 of Table 4) of sequence comple-
tion problems is probably the most important problem for any
sequence prediction nerwork to solve. One such problem solved
by cur model is pictured in Figurc 2b: Here chere are two se-
quences to be learned. Each sequence is made up of 12 patterns
in which each different partern is represented by a different let-
ter of the alphabet. A difficulty arises in the two sequence com-
pletion rests because there is a shared subsequence of length three
(e, B, ¥), which is part of both sequence 1 and sequence 2. It is
such a shared subsequence thar creates the ambiguity of the dis-
ambiguation problem. Because neural netwarks represent parterns
sequentially, the disambiguation problem can only be solved if
there are different representations for the shared subsequence. To
understand the netwoark’s difficulties, look at Figure 2b and con-
sider this: If T ask you where vou should end up if you start at A,
you will say L. And if you start at O, you know the learned sc-
quence’s end point is 7. But if | say chat you arc starting ar ¥,
you should not say anything or you should toss a coin to gucss
the sequence’s end point because there is no right answer. Thus,
the sequence completion problem can only be solved by using the
context produced by the recent past. Note that this context of the
past, which the nerwork does use to solve this problem (Minai et
al., 1994; Levy et al., 1993; Wu et al,, 1996}, arises from more
than one time step back in to the past. So the network itself {not
just the one time step-spanning associative modification rule)
must be producing a code that spans this time gap.

Goal Finding Without Search

I'o me, a usctul property in cognitive mapping is the abilicy
to imagine my way to a goal before actually taking the route that
seems the right one. That is, you might have to make a decision
quite far away from the goal—to twrn left or to turn right—so
you would need to know where your left turn or your right turn
would end up taking you relative to the possible goals which are
much further down the line. The nerwork has successfully solved
two versions of this goal-finding problem. Onc version uses the
looping path problem that demonstrates short cur finding, and
the other version uses the sequence disambiguation problem with
the shared subsequence.

As you recall in the looping pach problem (Fig. 2a), it is the
natural tendency of the network to go along the beginning, sub-
sequence 1-3, then to carry through sequence 6-10 and recog-
nizing, in some sense, the identity or similarity between sequences
6-10 and 2630, condnuing on into the rail of the scquence to
reach pattern 40, che last pattern of the scquence. All the while,
the network avoids the looping subsequence of patterns 11-29
that was part of the original learning,. This behavior, however, can
be changed by giving the nerwork a hint abour anether goal (Levy
et al., 1995).

In both of the goal-finding problems, we view the goal as some

type of physical object such as warer or food, and we assume that
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this goal was present during learning. Therelore, this physical ob-
jeet would be part of the input code given to the network. If we
are willing to grant thar a chirsty rac can chink of water, then we
are allowed to input a generic code for water both during learn-
ing and during testing, During learning, we would pretend that
water would be present somewhere in the loop, for instance at
positon 21 (which is deep inside the loop). We would use four
of the 512 neurons to represent the presence of water ar 21 and
four other neurons to represent the rest of 21 as an external code.
Now when a network wrained on the overlapping leop is tested,
that s, when pattern 1 is presented during testing, the four neu-
rons representing water are turned on and left on throughour the
entire testing period (as if the network is thirsty throughout rest-
ing). In this case the network no longer traces the short-cur pach
to pattern 40. Rather, the path the network traces leads to posi-
tion 21, and here, of in the near vicinity, it remains. The other
goal-finding problem is described in the next section.

Piecing Together Subsequences

The sequence disambiguation problem pictured in Figure 2b
can be turned inwo a much morc interesting problem. Taking the
same nerwork char has learned how o de sequence disambigua-
toen, we now ask the network e do goal-finding where the geal
contradicts the sequence disambiguation resules. For cxample, in
the sequence disambiguation problem, the network is given only
pateern A, and the correct answer is a sequence that arrives at L
as was the case during learning, whereas in the piccing-to-
gether/goal-finding problem, the network again gets pactern A as
an inpuc, buc the correct answer is a sequence leading to Z. Onee
again, the goal is incompletely defined by turning on a small num-
ber of externally actvared neurons asseciated wich the goal and
then allowing the nerwork te develop a sequence of patterns af-
ter being given the first patern. When a strong enough input is
given signifving the goal, typically four out of 512 ncurons (Levy
and W, in preparation; Wu and Levy, 1996}, then the neework
is able to create the appropriate path from the beginning of ene
sequence to the end of another sequence. As shown in Figure 2b,
this path (e.g., ABCaByUVWXYZX), which was never experi-
enced by a network during |ea|‘ning, is created by apprepriately
sewing together subsequences from the two separately learned se-
quences. Such a path is the appropriate answer to the goal-find-
ing problem.

Transverse Patterning

Transverse patterning (Alvarado and Rudy, 1992} is a config-
ural learning preblem in which the meaning of each of three atomic
stimuli {e.g., A, B, C) depends on the pairing of these individual
stimuli with cach other. Thus, the transverse-patterning problem
uses context coming from the configuration of the atomic stim-
uli. "I'his is a context of the presenc in contrast to catlier problems

in which contexe came from the past (disambiguation) or context
comes from the future {goal finding). As shown by Alvarado and
Rudy, such problems can be solved by rats when the proper learn-
ing procedure is used (Alvarado and Rudy, 1992). Also shown by
them is the necessity of a hippocampus o learn the correet re-

sponses in this problem. The stimuli to be learned and their rein-
forcement are AB where A is the correct answer, BC where B is
the correct answer, and AC where C s the correct answer,

Although not typically viewed as such, such a configural learn-
ing rask embodics sequence learning, and one such inpurt sequence
is shown in Figure 3a—d. Specifically, the sequence is 1) the con-
figured stimulus complex (c.g., AB) followed by 2) a motor de-
cision/respense which sclects one of the sdmuli {e.g., choose A)
tollowed by 3} a reinforcement, (e.g., positive}). Once viewed as
a sequence, such problems are amenable o solution by our se-
quence learning madel, In face, it an appropriately coded inpur
is given (as in Fig. 3), the CA3 model can soive the transverse
patterning problem (Levy cral,, 1996; Wu et al., in preparation).
In ebtaining this solution, we have again used the method of goal
finding by partial designarion; this time the goal is the positive
reinforcement (neurons 73-88 of Fig. 3). Decoding is praduced
by comparing the network’s outpur at time periods 4, 5, and 6
to the code for each of the three possible decisions/responses.

Transitive Inference

Transitive inference is another conﬁgur&] prob}eln Again, the
atomic stmull {in this case &, B, C, D, and L) change from be-
ing the correct or the incorrect answer as a function of the stim-
ulus with which each one is paired. The learning set in transitive
inference consists of four pairs: AB, with A the correct answer:
BC, with B the correct answer: CI2, with C the correct answer:
DE, with D the correct answer. The test for transitive inference
is presenting the animal with B and D where the correct answer
is B {picture the mathematical relationship A=B, B> C, C >
D, D = E then B = D). Indeed, this problem proves easier for
the network to learn than the transverse patterning problem when
using the exact same enct)ding strategy (Wu and Levy, in prepa-
ration).

FIGURE 3. Some neuronal firing patterns in the transverse pat-
terning problem. This figure shows how part of the transverse pac-
terning problem is coded and how learning alvers firing patterns.
These four vertical strips show a subset of the CA3 neurons {140 out
of 512). {The remaining 371 neurons are local context neurons if
they fire—not shown due to lack of space.) In each strip, there are
nine time steps. Neurons 1-16 mediate the external activation of the
AB configuration. Neurons 25-40 mediate the decision/motor re-
sponse that accompanies the selection of pattern A. Neurons 7388
mediate the positive reinforcement that is given when the correct
atomic stimuli is selected {in this case A of the AB). A comparison
of a, i.e., before learning, to ¢, after learning, shows the altered fir-
ing due to leaming. Note the additional firings in ¢, particularly neu-
rons 89 and up. Thesc are the local context firings. By comparing
b, i.e., before learning, and d, i.e., after learning, the reader can as-
certain the new patterning of firing that occurs during testing. The
network is tested by activating the AB input confignration and by
activating one-quarter of the positive reinforcement configuration
{neurons 73-76). The reader should be able to discern that over time
steps 4, 5, and 6 (horizontal brace) the firing patterns in d are more
similar to the firing patwerns at the same time in ¢ than are patterns
4, 3, and 6 of b compared to ¢. In performing the decodings, the
firings of d over time steps 4, 5, and 6 are compared to the learned
neuronal codes of all three possible decisions.
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What Other Problems Can the Network Solve?

Can the model solve the water mazc problem? Can the maodel
do trace conditioning? It seems likely, bur these problems are as
vet uneried.

WHY THE MODEL WORKS: CODINGS

FOR LOCAL CONTEXT AND THE
CREATION OF ATTRACTORS

The key to most nerwork success is the formation of local con-
wext neurons. '1hese patterns of neuronal firing by individual neu-
rons are best understood by referring o the picture of Higure 4.
Here a very simple, slowly shifting sequence of 40 patterns is the
inpur. Fach input activates eight neurons; the first partern acti-
vates neurons 1-8; the 40th pattern activates neurons 40—47. On
the left is the first learning trial. Note the firing of the neurons
not activated by the external inputs (neurons 48 and up), and, in
particular, note their somewhat random firing. After a suitable
number of learning trials, the firing in the network {shown on
the right of Fig. 4} is quite different. Whereas, before learning,
neurons might fire once and chen fire again some time later, we
now can see that neurons have very strict patterns of firing, in
which firing does not happen for a period of time, then firing is
continuous for a period of time, and then firing ceases for the rest
of the sequence.

Why do such firing patterns appear? Most important is the
rime-spanning associative modification rule. This rule asseciates
newrons across time so repetitive firing is parc of the learning
repertoire of the ncurons. In addition, ather variables can be crit-
ical, e, activity levels and che inpurt code (Levy and Wu, 1996;
Wu et al., 1996).

In effect, individual ncurons have learned to recognize partic-
ular subsequenccs of the input sequence. In this way, thesc local
context firings arc analogs of place cells. Thar is, a place ccll “rec-
ognizes” a smaller arca within a large area, whereas a local con-
text cell “recognizes” a subsequence of larger sequence.

Thesc local context neurons should be viewed as pattern-recog-
nition devices, "[hus, the nerwork has a variety of recognition de-
vices for any one, single pattern, and each neuron might be the
recognition device for a slightly different subscquence of patterns.
Because these subsequences {i.e., local context neuronal firings)
arc more or less random, they are interdigitared with one another.
As a result of such overlapping and interdigitating local context
codes, remporally neighboring patterns and wemporally neigh-
boring subsequences will tend to turn en in succession and even
simultaneously. By locking ar such patterns of neuronal firing and
by manipularing them through the variables listed in "I'able 2B,
we conclude thar the formation of these local context neurons is
critical to the nerwork’s ability 10 solve every problem listed in
‘I'able 4, with the exception of simple partern completion.

Bur just local context codes arc not always enough. Solurions
to many of the problems discussed here are correlated with the

formation of attracters. For cxample, in the overlapping loop
problems—{finding a short cut and finding the goal within the

loop—it is necessary for the ncework to create an attractor cither
at the end of the loop or in the vicinity of the goal (Levy ct al,
1995; Wu er al., 1996). (Of course, these attractors arc not sta-
ble point attractors but are more akin to pseudo-chaotic orbits of
moderate diameter. That is, once the nerwork is in the region of
an attractor, its precise output “randomly” changes without mov-
ing very far when looking at network states over a long or short
period of time.) Such results—the necessicy for local contexc neu-
rons and artractors—arc cxamples of the advantage of studying
simple networks; that s, they allow us to understand the critical
codes and the variables necessary for producing successful nei-
work performance.

DISCUSSION

What Do We Know Now That We Did Not
Know Before?

The discovery of attractors at the ends of sequences was a sur-
prise to us and led to an insight. The network mighe be able to
find goals by being artracted to them. From this followed the
demonsteation of a network using context future, That is, once we
noted that these asymmetric networks could form attracrors (al-
though their tendency is not to form such attractors and these are
not stable arcracrors, as already noted above), we were able o hy-
pothesize that the attractors could be moved by virtue of turning
on a small number of relevant neurons. This led not only o the
demonstration of context future being used for the goal-finding
problems, but ir also led to versions of the transitive inference and
the rransverse patterning problems that the nerwork can solbve.

Sccond, although we did know that local centext codes could
be uscd o define subsequences (sec picture, page 296ff in Levy,
1989), we had no idea how easily they would form, The scheme
in Levy (1989 for the formation of local context neurons in-
volving a mismatch detector appcars unnecessary. Still the idea
that contexts provide the conditoning variable of conditional

FIGURE 4, Formation of local context neurons. The left- and
right-hand panels illustrate a portion of the activity patterns dis-
played by the netwock before (left) and after (right) learning. A large
dot indicates cell firing, and a small dot indicates nonfiring of a cell.
Ar each successive time step, eight neurons are fired externally. In
time step 1, it is neurons 1-8. Ar time step 2, it is nearens 2-9, and
so on until time step 40, when neurons 40—47 are externally acti-
vated, In addition to the extrinsically activated neurons, ether neu-
rons are fired via recurrent connections. Before learning, recurrently
activated firing is somewhat haphazard, although certainly not uni-
formly random. After learning, however, very special patterns of re-
current firing occur. Individual neurons have learned to identify sub-
sequences of the 40-patteen sequence. A neuron that does fire tends
to fire in a consecutive set of firings, with no firings before the be-
ginning of the set or after the end of this set. Such firings are criti-
cal 1o the performance of the necwork in all the problems described
except simple sequence completion. Such local context neurenal fir-
ings also occur when the input sequence is composed of more com-
plex patterns that change faster and occasionally make orthogonal
jumps between groups of externally active neurons.
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probabilitics connccts our current thinking with these earlier
ideas.

Finally, the interdigication of context unit ﬁring Was 1ot un-
derstood before we did the modeling, and this interdigitation is
funcrionally important. First, interdigitation allows one subse-
quence to pass its influence on to another subsequence. But there
is another, perhaps more fundamental importance of such inter-
digitated firing patterns when we consider the problem of the hip-
pocampus teaching the cerebral cortex. Such local subsequences
that interdigitate lead ro a time spanning of patterns that wilt al-
low the cerebral cortex to chunk (Miller, 1956} pieces of the sc-
quence. Indeed, when the network is allowed to speed up by low-
ering inhibition, chunking-like codes become apparenc in the
network oucput itself (August and Levy, 1996).

What Did the Model Accomplish That Could
Not Have Been Accomplished by Simpler
Verbal-Qualitative Reasoning and How Does
This Model Relate to Other Noncomputational
Theories That Have Been Proposed?

First, the use of local context firings just discussed is not even
a part of the cognitive theories so the model adds semething inm-
mediately.

Second, and more to the point of this scetion, is the unifica-
tion of a diversity of theoretical and paradigmatic perspectives.

Table 5 relawes some hippocampal theories to the paradigms used
here. For us, the disparate nature of the various theories and the
different paradigms that have been used ro characterize hippocam-
pal function made it difficult to understand their interrelationship.

TABLE 5.

The perspective offered by the model provides an interrela-
tionship, if not added harmony, among the theories. Thar is, the
simplest way to understand the interrelationship of che paradigms
and theoeries is via the computational model. To say it another
way, the interrclationship grows out of the many characteristics
of the unsupervised sequence prediction network described here.

Importance of context

The coding and use of context is enc of the most important
characteristics of the nerwork. The promiscuous assoctator of the
Cohen-Bichenbaum theory is rcalized largely by the formacion of
focal context neurons and goal-dependent actractors, The great-
est flexibility comes from the use of contexr {past, present, or fu-
ture) to distinguish related sequences or to induce the formation
of novel sequences. Goal-dependent atcractors allow the network
to create novel scquences (i.c., piece together subsequences). Of
course, context is fundamental o the ideas of Hirsh {1974}, Gray
{1982}, and Kesner and Hardy {1983). Indeed, Kesner under-
stood that scquence learning would be a form of context learn-
ing.

What New Experimental Directions Are
Suggested by This Modeling, Either (a) To Test
Novel Predictions or (b) To Gather More Data
Where the Model Indicates That There Is a Need
for Such?

The model will not be able to produce predictions with enough
details for actual laboratory (esting undl che model is made more
physiclogical. Generically, however, there are predictions.

Summary of the Problems Solved by the Network and Theiv Relationship to Various Theoretical Perspectives on Hippocampal

Function*
Intermediate episodic
memory store & Sequence learning/ Cognitive Learn & Flexible
teach cortex prediction mapping use context assocator
Spontaneous rebroadcast X X
One-trial learning X X
Simple sequence completion X X
Jump-ahead recall X X
Finding a short cut X X
Goal finding X X X
Piecing together subscquences X X X X
Disambiguation X X
Transverse patterning X X X
Transitive inference X X

*Alarge X indicates a straightforward relationship between the paradigm solved by the network and a suggested hippocampal function of a cog-
nitive/behavioral theory. Smaller x's indicate a subtle, or perhaps nonobvious, relationship between sequence prediction and a particular para-
digm. The flexible memory theory refers 1o a subset of the theory advocated by Cohen and Eichenbaum (1993}, but nut &0 the entive theory which
would presumably claim to encompass all cognitive /behavioral problems within the range of hippocampal fumction. Likewise, | assume broader
claims would come from the modified configural learning theory of Rudy and Sutherland {1995); it could be claimed that a great deal more of

these problems are solved via the use of context, but context is explicit and straightforward in only the problems indicated.
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One thing we have learned in cur modeling is the cricical im-
portance of activity levels. Activity levels must not be allowed to
fluctuate too drastically or in such a way that would disrupt con-
rext codes, and activity levels must be maintained at a moderate
level, ncither too high or too low, With activity levels too high,
there is very litdle memory capaciry in the network {Levy and W,
1995; Wu and Levy, 1995; Levy and Wu, 1996), and with ac-
tivity levels too low, cherc is no formation of context units. Nature
must also worry about the same problems.

We have also learned abourt the critical nature of the input en-
vironment for the network o perform appropriately (Wu et al.,
1996; Levy ct al., 1996; Wu et al., in preparation). This leads us
tor speculate about difficule environments: Difficult environments
may have to be preprocessed if they are to be solved ar all.

Defeating the network

It is possible to find a version of any problem listed in Table
4 that the neowork cannot solve. That is, inputs can be created
that defeat the network by virtue of too much noise, overly long
sequences, or sequences that change too drastically and roo often.
Bur such failures are not altogether bad. First, the same kind of
“cxtreme” environments will defeat the learning of any mammal
asked to solve a similar problem, and thus, such failures are re-
preducing, at least generically, proper characteristics of cognition.
Second, such defeats lead us ro hypothesize the nature of the EC-
hippocampal signals thar lead ro success. Specifically, we can pre-
dict that the inputs from the EC will not shift wo wildly over
short periods of time if the hippocampus is to form useful con-
text codes.

In sum, the model was inspired by the idea. that hippocampal
region CA3 has the anatomy and physiology needed for sequence
prediction and that sequence prediction would be useful for solv-
ing cognitive mapping problems, The tasks described here are all
sequence prediction problems. Howcever, because the themes of
the hippocampal function, especially in humans, are not solely
concerned with cognitive mapping but also concern declarative
memory (flexible associations) and formation of context, we srud-
ied paradigmatic examples that would show the learning and use
of context and that would also show a flexibility in reconfiguring
stimuli as a function of learning context.
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