
cs1120 Fall 2009

David Evans
http://www.cs.virginia.edu/evans

Lecture 18: Changing State
Sounds of Colossus: http://pixelh8.co.uk/discography/

Menu

• Computing with Electrons

• The Story So Far

• Introduction Mutation

Yesterday’s Nobel Prize in Physics

Charles K. Kao

Bell Labs, New Jersey

Standard Telecommunication

Laboratories, United Kingdom

fiberoptics: using light to

transmit data

Willard S. Boyle George E. Smith

Charge-Coupled Device (1969)

Charge-Coupled Device (CCD)

Moving Collected Charge

Photocell

Light

Silicon substrate:

not powered, conducts well

powered, does not conduct
Voltage

Photocell:

photoelectric effect

(Einstein’s 1921 nobel

prize): photons hit

silicon plate and knock

out electrons (more

light, more electrons)

CCDs Today

Sloan Digital Sky Survey (1998): array of 30, ~4Mpixel CCDs

cs1120 Story so Far

Course RoadmapSynthesis

Analysis

C
h

 2
:

La
n

g
u

a
g

e

C
h

 3
:

P
ro

g
ra

m
m

in
g

C
h

 4
:

P
ro

ce
d

u
re

s

C
h

 5
:

D
a

ta
C

h
 6

:
M

a
ch

in
e

s

C
h

 7
:

C
o

st

C
h

 8
:

S
o

rt
in

g
 a

n
d

 S
e

a
rc

h
in

g

P
S

5
,

C
h

 9
:

S
ta

te

P
S

6
,
C

h
 1

0
:

O
b

je
ct

s

C
h

 1
3

:
In

tr
a

ct
a

b
il

it
y

P
S

7
,
C

h
 1

1
:

In
te

rp
re

te
rs

C
h

 1
2

:
C

o
m

p
u

ta
b

il
it

y
P

S
8

,
9

:
B

u
il

d
in

g
 W

e
b

A
p

p
li

ca
ti

o
n

s

Y
o

u
 a

re

h
e

re

C
h

 1
:

C
o

m
p

u
ti

n
g

Computer Science: cs1120 so far

• How to describe information processes by

defining procedures (Chapters 3, 4, 5)

– Programming with procedures, lists, recursion

• How to predict properties about information

processes (Chapter 6, 7)

– Predicting how running time grows with input size

• How to efficiently implement information

processes (not much on this)

– Chapter 3 (rules of evaluation)

– Chapter 6 (machines)

cs1120 Upcoming

• How to describe information processes by
defining procedures
– Programming with state (Ch 9), objects (Ch 10), languages (Ch

11)

• How to predict properties about information
processes
– Are there problems which can’t be solved by algorithms? (Ch

12)

– What is the fastest process that can solve a given problem? (Ch
13)

• How to efficiently implement information processes
– How to implement a Scheme interpreter (Ch 11)

The Liberal Arts

Trivium (3 roads) Quadrivium (4 roads)

Grammar Rhetoric Logic Arithmetic

Geometry

Music

Astronomy

From Chapter 1/Lecture 1:
Liberal Arts Checkup

• Grammar: study of meaning in

written expression

• Rhetoric: comprehension of verbal

and written discourse

• Logic: argumentative discourse for

discovering truth

• Arithmetic: understanding

numbers

• Geometry: quantification of space

• Music: number in time

• Astronomy

BNF, RTN, rules of

evaluation for meaning

Not much yet…interfaces

between components (PS6-9),

program and user (PS8-9)

Rules of evaluation, if,

recursive definitions

Not much yet…

wait until November

Curves as procedures,

fractals (PS3)

Yes, listen to “Hey Jude!”

Soon: read Neil deGrasse Tyson’s essay

Tr
iv

iu
m

Q
u

a
d

ri
v
iu

m

Introducing

Mutation

Evaluation Rule 2: Names

A name expression evaluates to the value

associated with that name.

> (define two 2)

> two

2

From Lecture 3:

This has been more-or-less okay so far, since the value

associated with a name never changes...

Names and Places

• A name is not just a value, it is a place for storing a

value.

• define creates a new place, associates a name with

that place, and stores a value in that place

x: 3(define x 3)

Bang!

set! (“set bang”) changes the value associated

with a place

> (define x 3)

> x

3

> (set! x 7)

> x

7

x: 37

set! should make you nervous

> (define x 2)

> (nextx)

3

> (nextx)

4

> x

4

Before set! all procedures

were functions (except for

some with side-effects). The

value of (f) was the same

every time you evaluate it.

Now it might be different!

Defining nextx

(define (nextx)

(set! x (+ x 1))

x)
(define nextx

(lambda ()

(begin

(set! x (+ x 1))

x))))

syntactic sugar for

Evaluation Rules

> (define x 3)

> (+ (nextx) x)

7

or 8
> (+ x (nextx))

9

or 10

DrScheme evaluates application

subexpressions left to right, but

Scheme evaluation rules allow any

order.

Mutable Cons Cell

mcons – creates a mutable cons cell

(mcar m) – first part of a mutable cons cell

(mcdr m) – second part of a mutable cons cell

1 2

(mcons 1 2)

set-mcar! and set-mcdr!

(set-mcar! p v)

Replaces the car of mutable cons p with v.

(set-mcdr! p v)

Replaces the cdr of mutable cons p with v.

These should scare you even more then set!!

> (define pair (mcons 1 2))

> pair

(1 . 2) pair:

1 2

> (define pair (mcons 1 2))

> pair

(1 . 2)

> (set-mcar! pair 0)

> (mcar pair)

0

> (mcdr pair)

2

> (set-mcdr! pair 1)

> pair

(0 . 1)

pair:

1 20 1

Impact of Mutation

• We will need to revise our evaluation rules for

names and application expressions:

substitution model of evaluation no longer

works since values associated with names

change

• We need to be much more careful in our

programs to think about when things happen:

order matters since values change

Charge

• PS5: posted now, due next Wednesday

• Read Chapter 9

• Friday: return Exam 1, Revising our Evaluation

Rules to handle mutation

Monday, 19 October

