

One-Slide Summary

The substitution model for evaluating Scheme does
not allow us to reason about mutation. In the
environment model:

A name is a place for storing a value. define,
mcons, cons and function application create
places. set! changes the value in a place.

Places live in frames. An environment is a frame
and a pointer to a parent frame. The global
environment has no parent.

To evaluate a name, walk up the frames until you
find a definition.

Functional and imperative procedures may have
different asymptotic costs.

Outline

e Functional vs. Imperative

« Names and Places

e Environment Model practice
o Cost computation practice
e Undergrad research

#3

Functional vs. Imperative

Functional Solution: A procedure that
takes a procedure of one argument and a
list, and returns a list of the results
produced by applying the procedure to
each element in the list.

(define (list-map proc Ist)
(if (null? Ist) null
(cons (proc (car Ist))
(list-map proc (cdr Ist)))))

#4

: (define (list-map proc Ist)
Im pe rative (if znull?l Ist) null
(cons (proc (car Ist))

Solution (ist-map proc (cdr Ist))))

A procedure that takes a procedure and list as
arguments, and replaces each element in the list

with the value of the procedure applied to that
element.

(define (mlist-map! f Ist)
(if (null? Ist) (void)
(begin
(set-mcar! Ist (f (mcar Ist)))
(mlist-map! f (mcdr Ist)))))

#5

Programming with Mutation

> (mlist-map! square (intsto 4))
> (define i4 (intsto 4))

> (mlist-map! square i4)

> 4

(149 16)

> (define i4 (intsto 4))
> (list-map square 14)
(149 16)

> 14

(1234)

aAlleladuw|

leuonoun4

#6

Names and Places

A name is a place for storing a value.
e define creates a new place

e cons and mcons create two new places,
the car and the cdr

e (set! name expr) changes the value in the
place name to the value of expr

e (set-mcar! pair expr) changes the value in
the car place of pair to the value of expr

#7

New Application Rule:

1. Construct a new environment, whose
parent is the environment to which the
environment pointer of the applied
procedure points.

2. Create places in that frame for each
parameter containing the value of the
corresponding operand expression.

3. Evaluate the body in the new
environment. Result is the value of the
application.

#8

1. Construct a new
environment, parent is
procedure’s environment
pointer

2. Make places in that
frame with the names of
each parameter, and
operand values

3. Evaluate the body in the
new environment

> (define x 3)

global
environm%

+ : #<primitive:+>

X

#9

lobal
1. Construct a new oo %

environm

environment, parent is
procedure’s environment + : #<primitive:+> || x: 3
pointer
2. Make places in that adder:
frame with the names of
each parameter, and | J
operand values environment: e—
3. Evaluate the body in the parameters: x
new environment body: (lambda (y)
(+ xy))

> (define x 3)
> (define (adder x)

(lambda (y) (+ xy))))

#10

lobal
1. Construct a new oo %

environm

environment, parent is
procedure’s environment + : #<primitive:+> || x: 3
pointer
2. Make places in that adder:
frame with the names of
each parameter, and t | J
operand values environment: e—
3. Evaluate the body in the parameters: x
new environment body: (lambda (y)
(+ xy))

> (define x 3)
> (define (adder x) x: 17

(lambda (y) (+ x y))))
> (define add17 (adder 17))

#11

lobal
1. Construct a new oo %

environm

environment, parent is
procedure’s environment + : #<primitive:+> || x: 3
pointer
2. Make places in that adder:
frame with the names of
each parameter, and t | J
operand values environment: e—
3. Evaluate the body in the parameters: x
new environment body: (lambda (y)
(+xy))

> (define x 3)
> (define (adder x) x: 17

(ambda (y) (+ xY)))) [omrormens o]
> (define add17 (adder 17) |caramatore'y

body: (+ x y)

#12

lobal
1. Construct a new oo %

environm

environment, parent is
procedure’s environment + : #<primitive:+> || x: 3
pointer
2. Make places in that :add1/ adder:
frame with the names of
each parameter, and t | J
operand values environment: e—
3. Evaluate the body in the parameters: x
new environment body: (lambda (y)
(+ xy))

> (define x 3)
> (define (adder x) x: 17

(ambda (y) (+ x V) | femvrormens o=
> (define add17 (adder 17))L caramatore'y

body: (+ x y)

#13

1. Construct a new gﬁinm%
environment, parent is
procedure’s environment + : #<primitive:+> || x: 3
pointer

2. Make places in that add17 adder:
frame with the names of
each parameter, and t | J
operand values environment: e—

3. Evaluate the body in the parameters: x
new environment body: (lambda (y)

(+ xy))

> (define x 3)

> (define (adder x) x:17
(Igmbda (y) (+xy)))) environment: e—H ‘

> (define add17 (adder 17))LJ| parameters: y

> (add17 3) body: (+ X y) v 3 ‘l

lobal
1. Construct a new oo %

environm

environment, parent is
procedure’s environment + : #<primitive:+> || x: 3
pointer
2. Make places in that :add1/ adder:
frame with the names of
each parameter, and t | J
operand values environment: e—
3. Evaluate the body in the parameters: x
new environment body: (lambda (y)
(+ xy))

> (define x 3)
> (define (adder x) x: 17

(lambda (y) (+ x y)))) - : K
> (define add17 (adder 17))L carametore y ‘

> (add17 3) body: (+ x y) ¥
20 ' J

global
environm%

+ . #<primitive:+> X:3

-:add17 adder:

A 4
environment: O—J

3. Ev parameters: X
new environment body: (lambda (y)
(+xy))

> (define x 3)
> (define (adder x) x: 17

(lambda (y) (+ x y)))) environment: —H
> (define add17 (adder 17))L{ parameters: y

> (add17 3) body: (+ x y) E ‘l
20

Functional vs. Imperative Costs

(define (I-map f p) (define (ml-map! f p)
(if (null? p) null (if (null? p) (void)
(cons (f (car p)) (begin
(l-map f (cdr p))))) (set-mcar! p (f mcar p))

e Running Time: O(N) (ml-map! f (mcdr p)))))
- where N is (length p) « Running Time: O(N)
- Assuming f in O(1) - Also N recursive calls

« Memory Use: O(N) with O(1) work each
- N new cons cells * Memory Use: O(1)

- No new cons cells
#17

Functional vs. Imperative Costs
(define (list-append p q)
(if (null? p) g
(cons (car p) (list-append (cdr p) q))))
e Running Time: O(p); p = (length p)
e New Cons Cells: O(p)

(define (mlist-append! p q)

(if (null? p) (error “append to empty list!”)
(if (null? (mcdr p)) (set-mcdr! p q)
(mlist-append! (mcdr p) q))))

e Running Time: O(p), New Cons Cells: Zero

#18

mlist-append! in action

> (define (mlist-append! p q)
(if (null? p) (error “append to empty list!”)

(if (null? (mcdr p)) (set-mcdr! p q)

(mlist-append! (mcdr p) q))))
> (define animals (mcons "ant” (mcons "bat" null)))
> (define colors (mcons "red” (mcons "green” null)))
> (mlist-append! animals colors)
> animals

77?7

> colors

77?77

#19

mlist-append! in action

> (define (mlist-append! p q)
(if (null? p) (error “append to empty list!”)
(if (null? (mcdr p)) (set-mcdr! p q)
(mlist-append! (mcdr p) q))))
> (define animals (mcons "ant” (mcons "bat" null)))
> (define colors (mcons "red” (mcons "green” null)))
> (mlist-append! animals colors)
> animals
{"ant” "bat"” "red" "green"}
> colors

{"red" "green"}
#20

Open-Ended Question

e You're designing cars.

e Each of your designs has various properties:

- High or low fuel efficiency, spacious or cramped
interior, manual or automatic transmission, high
or low purchase price, etc.

e You can also run a few focus groups or trial
sales:

- To see how many people will buy a given design.
« How do you make the best-selling design?

#21

Genetic Algorithms

e Search Strategy based on biological evolution
- Find X that maximizes P(X)
- Find CarDesigh maximizing Sales(CarDesign)

e Idea:

- Represent car design as genome (string)
e “LSMH” = “low fuel efficiency, spacious, manual, ...”

- Maintain a population of variant genomes

- Apply a random mutation operator to them
- The fittest individuals survive and mate

- Process repeats with a new generation

#22

Mutation and Crossover

e Mutation:
- “LSMH” might become “LCMH”

e Crossover:
“LSMH”
+ ({1 LCAL”
= “LSAL” + “LCMH”

e Fitness:

- Turn your genotype into a phentotype (i.e., build
a model car from your design) and evaluate it

(i.e., hire a focus group, test sales, etc.)
#23

Genetic Algorithm Successes

Creation of a soccer-playing program that ranked in
the middle of the field of 34 human-written
programs in the Robo Cup 1998 competition

Synthesis of an electronic thermometer

Automated Re-Invention of Six Patented Optical
Lens Systems using Genetic Programming

Towards Better than Human Capability in Diagnosing
Prostate Cancer Using Infrared Spectroscopic
Imaging

Scaffolding for Interactively Evolving Novel Drum
Tracks for Existing Songs

#24

Unrelated Question

e 50 Genetic Algorithms are a heuristic
approach for making small random changes to
something until, by chance, you make some
external judge happy.

e Totally unrelated question. How do your
friends pass Automatic Adjudication
programming assignments in this class?

#25

Automated

Program Repair
e On December 31, 2008, MS
Zune 30 music players died
e Microsoft had sold 1.2 million

e Problem: infinite loop in a recursive
computation converting days to years

- Bug shows up on last day of each leap year

e Microsoft's recommendation was to drain the
Zune's battery and reset it

e Our genetic programming approach fixes
the source code in 42 seconds. 12

The Bug

(define (days-to-years day year)
(if (<= day 365)
year
(if (is-leap-year? year)
(if (> day 366)
(days-to-years (- day 366) (+ year 1))
(days-to-years day year))
(days-to-years (- day 365) (+ year 1)))))

Try These Tests:
(days-to-years 300 2008)
(days-to-years 700 2008
(days-to-years 366 2008)

#27

The Fix

(define (days-to-years day year)
(if (<= day 365)
year
(if (is-leap-year? year)
(if (> day 366)
(days-to-years (- day 366) (+ year 1))
(days-to-years (- day 366) year))
(days-to-years (- day 365) (+ year 1)))))

#28

Automated Program Repair

e On 105 bugs taken systematically from 5.1
millions of lines of code with 10,000 test
cases ...

- Our genetic algorithm can repair 55 of them
- For only $7.32 each!
- Typical human cost: $25

 Why should you care?
- Ethan Fast, now at Stanford Grad School

- Briana Satchell, now at UMass Amherst Grad

School
#29

Homework

e PS 5!
- Due Friday 21 October
- It is longer than P54.

- If you wait, you will probably not have enough
time.

e Read Course Book 9
e Plus anything else Dave Evans assighed ...

#30

	Slide 1
	Slide 2
	Slide 3
	map
	Imperative Solution
	Programming with Mutation
	Slide 7
	New Application Rule 2:
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

