Let AB and CD be the two given numbers not relatively prime. It is required to find the greatest common measure of AB and CD.

If now CD measures AB, since it also measures itself, then CD is a common measure of CD and AB. And it is manifest that it is also the greatest, for no greater number than CD measures CD.

Euclid’s Elements, Book VII, Proposition 2 (300BC)

The note on the *inflected* line is only difficult to you, *because it is so easy*. There is in fact nothing in it, but you think there must be some grand mystery hidden under that word *inflected*.

Whenever from any point *without* a given line, you draw a long to any point *in* the given line, you have *inflected* a line upon a given line. Ada Byron (age 19), letter to Annabella Acheson (explaining Euclid), 1834

What is the difference between Euclid and Ada?

“It depends on what your definition of ‘is’ is.”

Bill Gates (at Microsoft’s anti-trust trial)

Geometry vs. Computer Science

- Geometry (mathematics) is about *declarative* knowledge: “what is”
 If now CD measures AB, since it also measures itself, then CD is a common measure of CD and AB
- Computer Science is about *imperative* knowledge: “how to”

Computer Science has little to do with beige (or translucent blue) boxes called “computers” and is not a real science.
Computer Science

“How to” knowledge:
• Ways of describing information processes (computations)

• Ways of predicting properties of information processes

What kinds of things do we want to predict?

Science, Engineering, Other?

Science?

• Understanding Nature through Observation
 – About real things like bowling balls, black holes, antimatter, electrons, comets, etc.
• Math and Computer Science are about fake things like numbers, graphs, functions, lists, etc.
 – Computer Science is a useful tool for doing real science, but not a real science

Engineering?

“Engineering is design under constraint... Engineering is synthetic - it strives to create what can be, but it is constrained by nature, by cost, by concerns of safety, reliability, environmental impact, manufacturability, maintainability and many other such ‘ilities.’...”

William Wulf

Apollo Guidance Computer, 1969

1 Cubic Foot

Why did they need to fit the guidance computer in the rocket?

Measuring Computers

• 1 bit = smallest unit of information
 – True or False
 – 0 or 1
 – If we start with 2 possible choices, and get 1 bit, we can eliminate one of the choices
How much power?
- Apollo Computer: 30720 bits of changeable memory
- Lab machines have 512 MB (RAM)
 - 1 Megabyte = 1024 Kilobytes, 1 Kilobyte = 1024 Bytes, 1 Byte = 8 bits
 - 512 MB
 - \(\times 512 \times 1024 \times 1024 \times 8 \)
 - 4294967296 ~ 4.3 Billion bits
 - \(\text{round} \left(\frac{\times 386 \times 1024 \times 1024 \times 8}{30720} \right) \)
 - 139810

If Apollo Guidance Computer power is 1 inch, you have 2.2 miles!

Computing Power 1969-2005
(in Apollo Control Computer Units)

Moore’s Law: computing power doubles every 18 months!

Constraints Computer Scientists Face
- Not like those for engineers:
 - Cost, weight, physics, etc.
 - If ~8 Million times what people had in 1969 isn’t enough for you, wait until 2007 and you will have 20 Million times...
- More like those for Musicians and Poets:
 - Imagination and Creativity
 - Complexity of what we can understand

So, what is computer science?
- Science
 - No: its about fake things like numbers, not about observing and understanding nature
- Engineering
 - No: we don’t have to deal with engineering-type constraints
- Liberal Art

Liberal Arts: ~1100
- Illiberal Arts
 - arts for the non-free: pursued for economic reasons
- Liberal Arts
 - arts for the free: pursued for intrinsic reasons

The Liberal Arts

We will see all of these in this class!
Course Expectations

What You Should Expect

• The fourth (?) coolest class at UVa
 – Less cool than PHYE162, PHYE163, PHYE164

• This course will be consistent with the original notion of a Liberal Arts education
• This course will be as consistent as possible with Mr. Jefferson’s vision for the University

Like Drinking from a Firehose

Don’t be overwhelmed!
You will do fine.

It may hurt a little bit, and a lot of water will go by you, but you won’t go away thirsty!

Help Available

• Me: David Evans (Call me “Dave” or “Coach”)
 – Office Hours will be posted (after your surveys)
 – Always available by email, if I don’t reply in 24 hours, send again and complain
• Assistant Coaches: David Faulkner and Dan Upton
• Web site: http://www.cs.virginia.edu/cs150
 – Everything goes on the web, you should visit it often
• Your classmates (read the course pledge carefully!)

What I Expect of You

1. Everything on the Course Pledge
 – You should actually read it not just sign it (you will lose points on PS1 if your submission reveals that you didn’t read it!)
2. You are a “Jeffersonian Student”
 1. Believe knowledge is powerful
 2. Interested in lots of things, ahead of your time
 3. Want to use what you learn to do good things
 4. Care more about what you learn than grades and degree requirements
Background Expected

- Language:
 - Reasonable reading and writing in English
 - Understanding of subject, verb and object
- Math:
 - Whole numbers, add, subtract, multiply, divide
 - Exponentiation, logarithms (we will review)
- Logic: and, or, not
- Computer Literacy: read email, browse web

If I ever appear to expect anything else, stop me!

A Course for Everyone!

- CLAS, SEAS, Commerce, Arch, etc.
- 1st, 2nd, 3rd, 4th, 5th Years, Community Scholars, Faculty
- No background expected...but challenging even for students with lots of previous CS courses (if you’ve already taken CS415 talk to me first)
- Computer Science (future-) majors...but worthwhile even if you don’t take another CS course

Shameless Pitch

- We need more students in this class!
- Recruit your friends
- Recruit your enemies
- Recruit random CLAS students

I will course action anyone who comes Friday into the class.

First Main Theme: Recursive Definitions

According to Guinness

floccipoccinilipilification

the act of rendering useless
Making Longer Words

antifloccipoccinilihilipilification
the act of rendering not useless

antiantifloccipoccinilihilipilification
the act of rendering useless

Language is Recursive

No matter what word you think is the longest word, I can always make up a longer one!

\[\text{word ::= \text{anti-word}} \]

If you have a word, you can always make up a new word by adding \text{anti} in front. Since the result is a word, you can make a longer new word by adding \text{anti} in front again.

Recursive Definitions

• We can define things in terms of themselves
• Recursive definitions are different from circular definitions: they eventually end with something real

\[\text{word ::= \text{anti-word}} \]
\[\text{word ::= floccipoccinilihilipilification} \]

Recursive Definitions

Allow us to express infinitely many things starting with a few.

This is powerful!
We will see lots of examples in this course.

Charge

• Before 5pm Thursday:
 – Registration survey (see course web site)
• Before Friday:
 – Read GEB p. 3-41
 • Anyone who can produce "MU", gets an automatic A+ in the course
 – Read SICP p. 1-21
• Don’t floccipoccinilihilipilate

Thanks!

• 2003 CS 200 students, 2002 CS200 students, 2001 CS655 students
• 2002 Assistant Coaches: Jon Erdman, Dante Guanlao, Stephen Liang, Partman Wills
• 2003 Assistant Coaches: Rachel Dada, Jacques Fournier, Spencer Stockdale, Katie Winstanley
• 2004 Assistant Coaches: Sarah Bergkuist, Andrew Connors, Patrick Rooney, Katie Winstanley
• 6.001 teachers: Gerry Sussman, Bob Berwick
• CS Department: Jim Cohoon, Ginny Hilton, Anita Jones, John Knight, Worthy Martin, Chris Milner, Gabe Robbins, Mary Lou Sofla, Jack Stankovic
• Teaching Resource Center: Marva Barnett, Freda Fretwell
• 2001-2 UTF Fellows: Phoebe Crisman, John Lach, Debra Lyon, Emily Scida, Brian Smith, David Waldner, UTF Mentor: Judith Shatin
• Anna Chefter, Chris Frost, Thad Hughes, Jerry McGann, Shawn O'Hargan, Mike Peck