
1

David Evans
http://www.cs.virginia.edu/evans

Class 11:
Golden Ages, Orders of
Growth, and Astrophysics

CS150: Computer Science

University of Virginia

Computer Science

2CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

Astrophysics

• “If you’re going to use your computer to simulate
some phenomenon in the universe, then it only
becomes interesting if you change the scale of
that phenomenon by at least a factor of 10. … For
a 3D simulation, an increase by a factor of 10 in
each of the three dimensions increases your
volume by a factor of 1000.”

• How much work is astrophysics simulation (in Θ
notation)?

Θ(n3)
When we double the size of the

simulation, the work octuples!
(Just like oceanography octopi

simulations)

3CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

Orders of Growth

0

20

40

60

80

100

120

140

1 2 3 4 5

n
3

n
2

n

simplesort

simulating
universe

find-best

4CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

Orders of Growth

0

200000

400000

600000

800000

1000000

1200000

1400000

1 11 21 31 41 51 61 71 81 91 101

simplesort

simulating

universe

find-best

5CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

Astrophysics and Moore’s Law

• Simulating universe is Θ(n3)
• Moore’s law: computing power
doubles every 18 months

• Tyson: to understand something
new about the universe, need to
scale by 10x

• How long does it take to know
twice as much about the universe?

6CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

;;; doubling every 18 months = ~1.587 * every 12 months
(define (computing-power nyears)
(if (= nyears 0) 1

(* 1.587 (computing-power (- nyears 1)))))

;;; Simulation is θ (n3) work
(define (simulation-work scale)

(* scale scale scale))

(define (log10 x) (/ (log x) (log 10))) ;;; log is base e
;;; knowledge of the universe is log 10 the scale of universe
;;; we can simulate

(define (knowledge-of-universe scale) (log10 scale))

Knowledge of the Universe

2

7CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

(define (computing-power nyears)
(if (= nyears 0) 1 (* 1.587 (computing-power (- nyears 1)))))

;;; doubling every 18 months = ~1.587 * every 12 months
(define (simulation-work scale) (* scale scale scale))

;;; Simulation is O(n^3) work
(define (log10 x) (/ (log x) (log 10)))

;;; primitive log is natural (base e)
(define (knowledge-of-universe scale) (log10 scale))
;;; knowledge of the universe is log 10 the scale of universe we can simulate

(define (find-knowledge-of-universe nyears)
(define (find-biggest-scale scale)
;;; today, can simulate size 10 universe = 1000 work

(if (> (/ (simulation-work scale) 1000)
(computing-power nyears))

(- scale 1)
(find-biggest-scale (+ scale 1))))

(knowledge-of-universe (find-biggest-scale 1)))

Knowledge of the Universe

8CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

> (find-knowledge-of-universe 0)

1.0

> (find-knowledge-of-universe 1)
1.041392685158225

> (find-knowledge-of-universe 2)
1.1139433523068367

> (find-knowledge-of-universe 5)

1.322219294733919
> (find-knowledge-of-universe 10)

1.6627578316815739

> (find-knowledge-of-universe 15)
2.0

> (find-knowledge-of-universe 30)
3.00560944536028

> (find-knowledge-of-universe 60)

5.0115366121349325
> (find-knowledge-of-universe 80)

6.348717927935257

Will there be any mystery
left in the Universe when
you die?

Only two things are
infinite, the
universe and
human stupidity,
and I'm not sure
about the former.

Albert Einstein

9CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

Insert Sort
(define (insertsort cf lst)
(if (null? lst)

null
(insertel cf

(car lst)
(insertsort cf

(cdr lst)))))

(define (insertel cf el lst)
(if (null? lst)

(list el)
(if (cf el (car lst))

(cons el lst)
(cons (car lst)

(insertel cf el
(cdr lst))))))

insertsort is Θ(n2)

10CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

Divide and Conquer

• Both simplesort and insertsort divide the
problem of sorting a list of length n into:

– Sorting a list of length n-1

– Doing the right thing with one element

• Hence, there are always n steps

– And since each step is θ (n), they are θ (n2)

• To sort more efficiently, we need to divide
the problem more evenly each step

11CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

Can we do better?

(insertel < 88

(list 1 2 3 5 6 23 63 77 89 90))

Suppose we had procedures

(first-half lst)
(second-half lst)

that quickly divided the list in two halves?

12CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

Insert Halves

(define (insertelh cf el lst) ;; assumes lst is sorted by cf
(if (null? lst)
(list el)
(let ((fh (first-half lst))

(sh (second-half lst)))
(if (cf el (car fh)) ; before first half, put at beginning

(append (cons el fh) sh)
(if (null? sh) ; sh is null means fh has one element

(append fh (list el))
(if (cf el (car sh))

(append (insertelh cf el fh) sh)
(append fh (insertelh cf el sh))))))))

(define (insertsorth cf lst)

(if (null? lst) null

(insertelh cf
(car lst)

(insertsorth cf (cdr lst)))))

Same as

insertsort
except uses

insertelh

3

13CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

Evaluating insertelh
> (insertelh < 3 (list 1 2 4 5 7))
|(insertelh #<procedure:traced-<> 3 (1 2 4 5 7))
| (< 3 1)
| #f
| (< 3 5)
| #t
| (insertelh #<procedure:traced-<> 3 (1 2 4))
| |(< 3 1)
| |#f
| |(< 3 4)
| |#t
| |(insertelh #<procedure:traced-<> 3 (1 2))
| | (< 3 1)
| | #f
| | (< 3 2)
| | #f
| | (insertelh #<procedure:traced-<> 3 (2))
| | |(< 3 2)
| | |#f
| | (2 3)
| |(1 2 3)
| (1 2 3 4)
|(1 2 3 4 5 7)
(1 2 3 4 5 7)

(define (insertelh cf el lst)
(if (null? lst)

(list el)
(let ((fh (first-half lst))

(sh (second-half lst)))
(if (cf el (car fh))

(append (cons el fh) sh)

(if (null? sh)
(append fh (list el))

(if (cf el (car sh))
(append (insertelh cf el fh) sh)

(append fh (insertelh cf el sh))))))))

Every time we call insertelh, the length
of the list is approximately halved!

14CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

How much work is insertelh?

Suppose first-half and second-half are θ (1)

(define (insertelh cf el lst)

(if (null? lst)
(list el)

(let ((fh (first-half lst))
(sh (second-half lst)))

(if (cf el (car fh))
(append (cons el fh) sh)

(if (null? sh)
(append fh (list el))

(if (cf el (car sh))
(append (insertelh cf el fh) sh)

(append fh

(insertelh cf el sh))))))))

Each time we call
insertelh, the size of
lst halves. So, doubling
the size of the list only
increases the number of
calls by 1.

List Size Number of insertelh applications
1 1

2 2
4 3

8 4
16 5

15CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

How much work is insertelh?

Suppose first-half and second-half are θ (1)

Each time we call
insertelh, the size of
lst halves. So, doubling
the size of the list only
increases the number of
calls by 1.

List Size Number of insertelh applications
1 1

2 2
4 3

8 4
16 5

insertelh would be
θ (log2 n)

log2 a = b

means
2b = a

16CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

insertsorth

(define (insertsorth cf lst)
(if (null? lst)

null
(insertelh cf
(car lst)
(insertsorth
cf
(cdr lst)))))

insertsorth would be Θ(n log2 n)
if we have fast first-half/second-half

Same as insertsort, except uses insertelh

(define (insertelh cf el lst)

(if (null? lst)

(list el)
(let ((fh (first-half lst))

(sh (second-half lst)))
(if (cf el (car fh))

(append (cons el fh) sh)
(if (null? sh)

(append fh (list el))
(if (cf el (car sh))

(append (insertelh cf el fh) sh)
(append fh

(insertelh cf el sh))))))))

17CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

Orders of Growth

0

2000

4000

6000

8000

10000

12000

14000

1 9 17 25 33 41 49 57 65 73 81 89 97 105

n
2

n log n

18CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

Is there a fast first-half procedure?
• No!

• To produce the first half of a list length n,
we need to cdr down the first n/2
elements

• So:

– first-half is θ (n)

– insertelh calls first-half every time…so

• insertelh is θ (n) * θ (log2 n) = θ (n log2 n)

• insertsorth is θ (n) * θ (n log2 n) = θ (n2 log2 n)

Yikes! We’ve done all this work, and its still worse than our simplesort!

4

19CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

We’ll figure
out
how to make a
fast first-half-
like procedure
Monday…

20CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

The Endless Golden Age

• Golden Age – period in which
knowledge/quality of something doubles
quickly

• At any point in history, half of what is
known about astrophysics was discovered
in the previous 15 years!

• Moore’s law today, but other advances
previously: telescopes, photocopiers,
clocks, etc.

21CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

Short Golden Ages

• Golden Age – period in which
knowledge/quality of something doubles
quickly

• Endless golden age: at any point in
history, the amount known is twice what
was known 15 years ago

• Short golden age: knowledge doubles
during a short, “golden” period, but only
improves gradually most of the time

0

1

2

3

4

5

6

1
9
3
0

1
9
3
4

1
9
3
8

1
9
5
0

1
9
5
4

1
9
5
8

1
9
6
2

1
9
6
6

1
9
7
0

1
9
7
4

1
9
7
8

1
9
8
2

1
9
8
6

1
9
9
0

1
9
9
4

1
9
9
8

2
0
0
2

A
v
e
ra
g
e
 G

o
a
ls
 p
e
r
G
a
m
e
,
F
IF
A
 W

o
rl
d
 C

u
p
s

Changed goalkeeper

passback rule

Goal-den age

23CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

Endless Golden Age and
“Grade Inflation”

• Average student gets twice as smart
and well-prepared every 15 years

–You had grade school teachers (maybe
even parents) who went to college!

• If average GPA in 1970 is 2.00 what
should it be today (if grading
standards didn’t change)?

24CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

Grade Inflation or Deflation?

2.00 average GPA in 1970 (“gentleman’s C”?)

* 2 better students 1970-1988
* 2 better students 1988-2005
* 3 admitting women, non-whites (1971)
* 1.54 population increase
* 0.58 increase in enrollment

4,648,494Virginia 1970

7,078,515Virginia 2000

Average GPA today should be:

21.4 CS150 has only the best of the best students, and only

the best 31/34 of them stayed in the course after PS1, so the

average grade in CS150 should be 21.4*2*2*34/31 = 93.9

Students 1970 11,000

Students 2002 18,848
(12,595 UG)

5

25CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

The Real Golden Rule?
Why do fields like astrophysics, medicine, biology
and computer science (?) have “endless golden
ages”, but fields like

– music (1775-1825)

– rock n’ roll (1962-1973, or whatever was popular when
you were 16)

– philosophy (400BC-350BC?)

– art (1875-1925?)

– soccer (1950-1974)

– baseball (1925-1950)

– movies (1920-1940)

have short golden ages?

Thanks to Leah Nylen for correcting this
(previously I had only 1930-1940, but that
is only true for Hollywood movies).

26CS150 Fall 2005: Lecture 11: Golden Ages and Complexity

Charge

• PS3 due Monday

• Understanding the universe is Θ(n3)

–Are there any harder problems?

• If you want to be famous pick a major
that has a short golden age from
2005-2020

• Our Constitution Day recognition will
be in Monday’s class

