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Astrophysics

• “If you’re going to use your computer to simulate 
some phenomenon in the universe, then it only 
becomes interesting if you change the scale of 
that phenomenon by at least a factor of 10. … For 
a 3D simulation, an increase by a factor of 10 in 
each of the three dimensions increases your 
volume by a factor of 1000.”

• How much work is astrophysics simulation (in Θ
notation)?

Θ(n3)
When we double the size of the 

simulation, the work octuples!  
(Just like oceanography octopi 

simulations)
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Orders of Growth
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Orders of Growth
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Astrophysics and Moore’s Law

• Simulating universe is Θ(n3)
• Moore’s law: computing power 
doubles every 18 months

• Tyson: to understand something 
new about the universe, need to 
scale by 10x

• How long does it take to know 
twice as much about the universe?
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;;; doubling every 18 months = ~1.587 * every 12 months
(define (computing-power nyears)
(if (= nyears 0) 1 

(* 1.587 (computing-power (- nyears 1)))))

;;; Simulation is θ (n3) work
(define (simulation-work scale) 

(* scale scale scale)) 

(define (log10 x)  (/ (log x) (log 10))) ;;; log is base e
;;; knowledge of the universe is log 10 the scale of universe 
;;; we can simulate

(define (knowledge-of-universe scale) (log10 scale))

Knowledge of the Universe
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(define (computing-power nyears)
(if (= nyears 0) 1 (* 1.587 (computing-power (- nyears 1)))))

;;; doubling every 18 months = ~1.587 * every 12 months
(define (simulation-work scale) (* scale scale scale)) 

;;; Simulation is O(n^3) work
(define (log10 x)  (/ (log x) (log 10))) 

;;; primitive log is natural (base e)
(define (knowledge-of-universe scale) (log10 scale))
;;; knowledge of the universe is log 10 the scale of universe we can simulate

(define (find-knowledge-of-universe nyears)
(define (find-biggest-scale scale)
;;; today, can simulate size 10 universe = 1000 work

(if (> (/ (simulation-work scale) 1000) 
(computing-power nyears))

(- scale 1)
(find-biggest-scale (+ scale 1))))

(knowledge-of-universe (find-biggest-scale 1)))

Knowledge of the Universe
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> (find-knowledge-of-universe 0)

1.0

> (find-knowledge-of-universe 1)
1.041392685158225

> (find-knowledge-of-universe 2)
1.1139433523068367

> (find-knowledge-of-universe 5)

1.322219294733919
> (find-knowledge-of-universe 10)

1.6627578316815739

> (find-knowledge-of-universe 15)
2.0

> (find-knowledge-of-universe 30)
3.00560944536028

> (find-knowledge-of-universe 60)

5.0115366121349325
> (find-knowledge-of-universe 80)

6.348717927935257

Will there be any mystery 
left in the Universe when 
you die?

Only two things are 
infinite, the 
universe and 
human stupidity, 
and I'm not sure 
about the former. 

Albert Einstein
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Insert Sort
(define (insertsort cf lst)
(if (null? lst) 

null
(insertel cf

(car lst) 
(insertsort cf

(cdr lst)))))

(define (insertel cf el lst)
(if (null? lst) 

(list el)
(if (cf el (car lst))

(cons el lst)
(cons (car lst)

(insertel cf el
(cdr lst))))))

insertsort is Θ(n2)
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Divide and Conquer

• Both simplesort and insertsort divide the 
problem of sorting a list of length n into:

– Sorting a list of length n-1

– Doing the right thing with one element

• Hence, there are always n steps

– And since each step is θ (n), they are θ (n2) 

• To sort more efficiently, we need to divide 
the problem more evenly each step
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Can we do better?

(insertel < 88 

(list 1 2 3 5 6 23 63 77 89 90))

Suppose we had procedures

(first-half lst)
(second-half lst)

that quickly divided the list in two halves?
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Insert Halves

(define (insertelh cf el lst) ;; assumes lst is sorted by cf
(if (null? lst) 
(list el)
(let ((fh (first-half lst))

(sh (second-half lst)))
(if (cf el (car fh))  ; before first half, put at beginning

(append (cons el fh) sh)
(if (null? sh) ; sh is null means fh has one element

(append fh (list el))
(if (cf el (car sh))

(append (insertelh cf el fh) sh)  
(append fh (insertelh cf el sh))))))))

(define (insertsorth cf lst)

(if (null? lst) null

(insertelh cf
(car lst) 

(insertsorth cf (cdr lst)))))

Same as

insertsort
except uses

insertelh
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Evaluating insertelh
> (insertelh < 3 (list 1 2 4 5 7))
|(insertelh #<procedure:traced-<> 3 (1 2 4 5 7))
| (< 3 1)
| #f
| (< 3 5)
| #t
| (insertelh #<procedure:traced-<> 3 (1 2 4))
| |(< 3 1)
| |#f
| |(< 3 4)
| |#t
| |(insertelh #<procedure:traced-<> 3 (1 2))
| | (< 3 1)
| | #f
| | (< 3 2)
| | #f
| | (insertelh #<procedure:traced-<> 3 (2))
| | |(< 3 2)
| | |#f
| | (2 3)
| |(1 2 3)
| (1 2 3 4)
|(1 2 3 4 5 7)
(1 2 3 4 5 7)

(define (insertelh cf el lst)
(if (null? lst) 

(list el)
(let ((fh (first-half lst))

(sh (second-half lst)))
(if (cf el (car fh))          

(append (cons el fh) sh)

(if (null? sh)
(append fh (list el))

(if (cf el (car sh))
(append (insertelh cf el fh) sh)  

(append fh (insertelh cf el sh))))))))

Every time we call insertelh, the length
of the list is approximately halved!
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How much work is insertelh?

Suppose first-half and second-half are θ (1)

(define (insertelh cf el lst)

(if (null? lst) 
(list el)

(let ((fh (first-half lst))
(sh (second-half lst)))

(if (cf el (car fh))          
(append (cons el fh) sh)

(if (null? sh)
(append fh (list el))

(if (cf el (car sh))
(append (insertelh cf el fh) sh)  

(append fh

(insertelh cf el sh))))))))

Each time we call
insertelh, the size of
lst halves.  So, doubling
the size of the list only 
increases the number of
calls by 1.

List Size Number of insertelh applications
1 1

2 2
4 3

8 4
16 5
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How much work is insertelh?

Suppose first-half and second-half are θ (1)

Each time we call
insertelh, the size of
lst halves.  So, doubling
the size of the list only 
increases the number of
calls by 1.

List Size Number of insertelh applications
1 1

2 2
4 3

8 4
16 5

insertelh would be
θ (log2 n)

log2 a = b

means
2b = a
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insertsorth

(define (insertsorth cf lst)
(if (null? lst) 

null
(insertelh cf
(car lst) 
(insertsorth
cf
(cdr lst)))))

insertsorth would be Θ(n log2 n)
if we have fast first-half/second-half

Same as insertsort, except uses insertelh

(define (insertelh cf el lst)

(if (null? lst) 

(list el)
(let ((fh (first-half lst))

(sh (second-half lst)))
(if (cf el (car fh))          

(append (cons el fh) sh)
(if (null? sh)

(append fh (list el))
(if (cf el (car sh))

(append (insertelh cf el fh) sh)  
(append fh

(insertelh cf el sh))))))))
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Orders of Growth
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Is there a fast first-half procedure?
• No! 

• To produce the first half of a list length n, 
we need to cdr down the first n/2 
elements

• So:

– first-half is θ (n)

– insertelh calls first-half every time…so

• insertelh is θ (n) * θ (log2 n) = θ (n log2 n)

• insertsorth is θ (n) * θ (n log2 n) = θ (n2 log2 n)

Yikes!  We’ve done all this work, and its still worse than our simplesort!
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We’ll figure 
out
how to make a 
fast first-half-
like procedure 
Monday…
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The Endless Golden Age

• Golden Age – period in which 
knowledge/quality of something doubles 
quickly

• At any point in history, half of what is 
known about astrophysics was discovered 
in the previous 15 years!

• Moore’s law today, but other advances 
previously: telescopes, photocopiers, 
clocks, etc.
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Short Golden Ages

• Golden Age – period in which 
knowledge/quality of something doubles 
quickly

• Endless golden age: at any point in 
history, the amount known is twice what 
was known 15 years ago

• Short golden age: knowledge doubles 
during a short, “golden” period, but only 
improves gradually most of the time
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Endless Golden Age and 
“Grade Inflation”

• Average student gets twice as smart 
and well-prepared every 15 years

–You had grade school teachers (maybe 
even parents) who went to college!

• If average GPA in 1970 is 2.00 what 
should it be today (if grading 
standards didn’t change)?
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Grade Inflation or Deflation?

2.00 average GPA in 1970 (“gentleman’s C”?)

* 2 better students 1970-1988
* 2 better students 1988-2005
* 3 admitting women, non-whites (1971)
* 1.54       population increase
* 0.58 increase in enrollment

4,648,494Virginia 1970

7,078,515Virginia 2000

Average GPA today should be:

21.4 CS150 has only the best of the best students, and only

the best 31/34 of them stayed in the course after PS1, so the

average grade in CS150 should be 21.4*2*2*34/31 = 93.9

Students 1970          11,000

Students 2002 18,848 
(12,595 UG)
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The Real Golden Rule?
Why do fields like astrophysics, medicine, biology 
and computer science (?) have “endless golden 
ages”, but fields like

– music (1775-1825)

– rock n’ roll (1962-1973, or whatever was popular when 
you were 16)

– philosophy (400BC-350BC?)

– art (1875-1925?)

– soccer (1950-1974)

– baseball (1925-1950)

– movies (1920-1940) 

have short golden ages?  

Thanks to Leah Nylen for correcting this 
(previously I had only 1930-1940, but that
is only true for Hollywood movies).
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Charge

• PS3 due Monday

• Understanding the universe is Θ(n3)

–Are there any harder problems?

• If you want to be famous pick a major 
that has a short golden age from 
2005-2020

• Our Constitution Day recognition will 
be in Monday’s class


