
1

David Evans
http://www.cs.virginia.edu/evans

Class 19:Class 19:

Think Globally, Think Globally,

Mutate LocallyMutate Locally

CS150: Computer Science

University of Virginia

Computer Science
2CS150 Fall 2005: Lecture 19: Environments

Menu

• Environments

• Evaluation Rules

• Exam 1

3CS150 Fall 2005: Lecture 19: Environments

(define nest
(lambda (x)

(lambda (x)
(+ x x))))

> ((nest 3) 4)
8

Does the
substitution model
of evaluation tell
us how to evaluate
this?

4CS150 Fall 2005: Lecture 19: Environments

Review: Names, Places, Mutation
• A name is a place for storing a value.

• define creates a new place

• cons creates two new places, the car and
the cdr

• (set! name expr) changes the value in the
place name to the value of expr

• (set-car! pair expr) changes the value in
the car place of pair to the value of expr

• (set-cdr! pair expr) changes the value in
the cdr place of pair to the value of expr

5CS150 Fall 2005: Lecture 19: Environments

Lambda and Places

• (lambda (x) …) also creates a new place
named x

• The passed argument is put in that place

> (define x 3)
> ((lambda (x) x) 4)
4
> x
3

How are these
places different?

x : 3

x : 4

6CS150 Fall 2005: Lecture 19: Environments

Location, Location, Location

• Places live in frames

• An environment is a pointer to a
frame

• We start in the global environment

• Application creates a new frame

• All frames except the global frame
have exactly one parent frame, global
frame has no parent

2

7CS150 Fall 2005: Lecture 19: Environments

Environments

global

environment

> (define x 3)

+ : #<primitive:+>
null? : #<primitive:null?>

The global environment points to the outermost
frame. It starts with all Scheme primitives.

x : 3

8CS150 Fall 2005: Lecture 19: Environments

Procedures

global

environment

> (define double (lambda (x) (+ x x)))

+ : #<primitive:+>
null? : #<primitive:null?>

double: ??

x : 3

9CS150 Fall 2005: Lecture 19: Environments

How to Draw a Procedure

• A procedure needs both code and an
environment

– We’ll see why soon

• We draw procedures like this:
Environment
pointer

Code pointer

parameters: x
body: (+ x x)

10CS150 Fall 2005: Lecture 19: Environments

How to Draw a Procedure
(for artists only)

Environment
pointer

x
(+ x x)

Input parameters

(in mouth) Procedure Body

11CS150 Fall 2005: Lecture 19: Environments

Procedures

global

environment

> (define double

(lambda (x) (+ x x)))

+ : #<primitive:+>
null? : #<primitive:null?>

double:

x : 3

parameters: x
body: (+ x x)

12CS150 Fall 2005: Lecture 19: Environments

Application

• Old rule: (Substitution model)

Apply Rule 2: Compounds. If the
procedure is a compound procedure,
evaluate the body of the procedure with
each formal parameter replaced by the
corresponding actual argument expression
value.

3

13CS150 Fall 2005: Lecture 19: Environments

New Rule: Application

1. Construct a new frame, enclosed in the
environment of this procedure

2. Create places in that frame with the
names of each parameter

3. Put the values of the parameters in
those places

4. Evaluate the body in the new
environment

14CS150 Fall 2005: Lecture 19: Environments

1. Construct a new frame,
enclosed in the
environment of this
procedure

2. Make places in that
frame with the names
of each parameter

3. Put the values of the
parameters in those
places

4. Evaluate the body in
the new environment

global

environment

> (double 4)

8

+ : #<primitive:+>

double: x : 3

parameters: x

body: (+ x x)

x : 4

(+ x x)(+ 4 4)8

15CS150 Fall 2005: Lecture 19: Environments

global

environment

+ : #<primitive:+>

nest: x : 3

parameter: x
body: (lambda (x) (+ x x))

x : 3

(define nest
(lambda (x)

(lambda (x)
(+ x x))))

> ((nest 3) 4)
((lambda (x) (+ x x)) 4)

x : 4

(+ x x)

16CS150 Fall 2005: Lecture 19: Environments

Evaluation Rule 2 (Names)
If the expression is a name, it evaluates to
the value associated with that name.

To find the value associated with a name,
look for the name in the frame pointed to by
the evaluation environment. If it contains a
place with that name, use the value in that
place. If it doesn’t, evaluate the name
using the frame’s parent environment as the
new evaluation environment. If the frame
has no parent, error (name is not a place).

17CS150 Fall 2005: Lecture 19: Environments

evaluate-name

(define (evaluate-name name env)

(if (null? env) (error “Undefined name: …”)

(if (frame-contains name (get-frame env))

(lookup name (get-frame env))

(evaluate-name name

(parent-environment

(get-frame env))))))

Hmm…maybe we can define a Scheme interpreter in Scheme!

18CS150 Fall 2005: Lecture 19: Environments

Charge

• Mutation makes
evaluation rules more
complicated

• Environment diagrams
quickly get complicated –
but like substitution
evaluations, just follow
rules mechanically

• Monday, we’ll finish
Colossus (don’t worry,
the Allies still won)

