
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Class 25:
Undecidable
Problems

2CS150 Fall 2005: Lecture 25: Undecidable Problems

Menu

• Review:

– Undecidability

– Halting Problem

• How do we prove a problem is
undecidable?

• What do we do when faced with an
undecidable problem?

3CS150 Fall 2005: Lecture 25: Undecidable Problems

Problem Classes if P ≠ NP:

Simulating

Universe:

O(n3)

Smileys

Find

Best:

Θ(n)NP-Complete

P

Θ(n)

NP

3SAT

Decidable

Undecidable

find proof

halts?

4CS150 Fall 2005: Lecture 25: Undecidable Problems

Halting Problem

Define a procedure halts? that takes a
procedure and an input evaluates to #t if
the procedure would terminate on that
input, and to #f if would not terminate.

(define (halts? procedure input) …)

5CS150 Fall 2005: Lecture 25: Undecidable Problems

Informal Proof

(define (contradict-halts x)
(if (halts? contradict-halts null)
(loop-forever)
#t))

If contradict-halts halts, the if test is true and
it evaluates to (loop-forever) - it doesn’t halt!

If contradict-halts doesn’t halt, the if test if false,
and it evaluates to #t. It halts!

6CS150 Fall 2005: Lecture 25: Undecidable Problems

Proof by Contradiction

1. Show X is nonsensical.

2. Show that if you have A and B you can
make X.

3. Show that you can make A.

4. Therefore, B must not exist.

X = contradict-halts
A = a Scheme interpreter that follows the evaluation rules
B = halts?

2

7CS150 Fall 2005: Lecture 25: Undecidable Problems

“Evaluates to 3” Problem

Input: A procedure P and input I

Output: true if evaluating (P I)
would result in 3; false otherwise.

Is “Evaluates to 3” decidable?

8CS150 Fall 2005: Lecture 25: Undecidable Problems

Undecidability Proof

Suppose we could define evaluates-to-3? that
decides it. Then we could define halts?:

(define (halts? P I)
(if (evaluates-to-3?

‘(begin (P I) 3))
#t

#f))

Since it evaluates to 3, we know (P I) must halt.

The only way it could not evaluate to 3, is if (P I)
doesn’t halt. (Note: assumes (P I) cannot produce
an error.)

9CS150 Fall 2005: Lecture 25: Undecidable Problems

Hello-World? Problem

Input: A procedure P and input I

Output: true if evaluating (P I)
would print out “Hello World!”;
false otherwise.

Is Hello-World? decidable?

10CS150 Fall 2005: Lecture 25: Undecidable Problems

Undecidability Proof

Suppose we could define hello-world? that
decides it. Then we could define halts?:

(define (halts? P I)
(if (hello-world?

‘(begin ((remove-prints P) I)
(print “Hello World!”))

#t
#f))

11CS150 Fall 2005: Lecture 25: Undecidable Problems

Proof by Contradiction

1. Show X is nonsensical.

2. Show that if you have A and B you can
make X.

3. Show that you can make A.

4. Therefore, B must not exist.
X = halts?
A = a Scheme interpreter that follows the

evaluation rules
B = hello-world?

12CS150 Fall 2005: Lecture 25: Undecidable Problems

From Paul Graham’s “Undergraduation”:

My friend Robert learned a lot by writing network software
when he was an undergrad. One of his projects was to connect
Harvard to the Arpanet; it had been one of the original nodes,
but by 1984 the connection had died. Not only was this work
not for a class, but because he spent all his time on it and
neglected his studies, he was kicked out of school for a year.
... When Robert got kicked out of grad school for writing the
Internet worm of 1988, I envied him enormously for finding a
way out without the stigma of failure.
... It all evened out in the end, and now he’s a professor at
MIT. But you’ll probably be happier if you don’t go to that
extreme; it caused him a lot of worry at the time.

3 years of probation, 400 hours of community service, $10,000+ fine

3

13CS150 Fall 2005: Lecture 25: Undecidable Problems

Morris Internet Worm (1988)
• P = fingerd

– Program used to query user status

– Worm also attacked other programs

• I = “nop400 pushl $68732f pushl $6e69622f movl
sp,r10 pushl $0 pushl $0 pushl r10 pushl $3 movl

sp,ap chmk $3b”

(is-worm? P I) should evaluate to #t

• Worm infected several thousand computers
(~10% of Internet in 1988)

14CS150 Fall 2005: Lecture 25: Undecidable Problems

Worm Detection Problem

Input: A program P and input I

Output: true if evaluating (P I) would cause
a remote computer to be “infected”.

Virus Detection Problem
Input: A program P and input I

Output: true if evaluating (P I) would cause a
file on the host computer to be “infected”.

15CS150 Fall 2005: Lecture 25: Undecidable Problems

Undecidability Proof

Suppose we could define is-worm? Then:

(define (halts? P I)
(if (is-worm? ‘(begin ((deworm P) I)

worm-code))
#t

#f))

Since it is a worm, we know worm-code was
evaluated, and P must halt.

The worm-code would not evaluate, so P must not halt.

Can we make deworm ?

16CS150 Fall 2005: Lecture 25: Undecidable Problems

Conclusion?

• Anti-Virus programs cannot exist!

“The Art of Computer Virus
Research and Defense”
Peter Szor, Symantec

17CS150 Fall 2005: Lecture 25: Undecidable Problems

“Solving” Undecidable Problems

• No perfect solution exists:

– Undecidable means there is no procedure
that:

1. Always gives the correct answer

2. Always terminates

• Must give up one of these to “solve”
undecidable problems

– Giving up #2 is not acceptable in most cases

– Must give up #1

18CS150 Fall 2005: Lecture 25: Undecidable Problems

Actual is-virus? Programs
• Give the wrong answer sometimes

– “False positive”: say P is a virus when it isn’t

– “False negative”: say P is safe when it is

• Database of known viruses: if P matches one
of these, it is a virus

• Clever virus authors can make viruses that
change each time they propagate

– A/V software ~ finite-proof-finding

– Emulate program for a limited number of steps;
if it doesn’t do anything bad, assume it is safe

4

19CS150 Fall 2005: Lecture 25: Undecidable Problems

Proof Recap

• If we had is-virus? we could define halts?

• We know halts? is undecidable

• Hence, we can’t have is-virus?

• Thus, we know is-virus? is undecidable

20CS150 Fall 2005: Lecture 25: Undecidable Problems

How convincing is our
Halting Problem proof?

(define (contradict-halts x)
(if (halts? contradict-halts null)
(loop-forever)
#t))

If contradict-halts halts, the if test is true and it evaluates to
(loop-forever) - it doesn’t halt!

If contradict-halts doesn’t halt, the if test if false, and it
evaluates to #t. It halts!

This “proof” assumes Scheme exists and is consistent!

21CS150 Fall 2005: Lecture 25: Undecidable Problems

Charge

• Scheme is very complicated (requires
more than 1 page to define):

– Unlikely we could prove it is consistent

• To have a convincing proof, we need a
simpler programming model in which we
can write contradict-halts:

– Next week: Turing’s model

