Class 27:
Universal
Turing

Machines

CS150: Computer Science
University of Virginia
Computer Science

David Evans
http://www.cs.virginia.edu/evans

Describing Finite State Machines

TuringMachine ::= < Alphabet, Tape, FSM >

FSM ::= < States, TransitionRules, InitialState, HaltingStates >

States ::= { StateName*}

InitialState ::= StateName must be element of States

HaltingStates ::= { StateName* }all must be elements of Stateq

TransitionRules ::= { TransitionRule*}

TransitionRule ::=

< StateName, ;; Current State Transition Rule is a procedure:

OneSquare, ;; Current square Inputs: StateName, OneSquare
StateName, :: Next State Outputs: Stfate/\/‘ame, OneSquare,
OneSquare, ;; Write on tape Direction
Direction > ;; Move tape

Direction ::= L, R, #

CS150 Fall 2005: Lecture 27: Universal Turing Machines

w

=
fil Computer Sc

Enumerating Turing Machines

¢ Now that we've decided how to describe
Turing Machines, we can number them

Turing Machine (1936)

zlzfzfz]z]z]z]z]z]z]z]z]z]z] 2] 2]z [z] 2] =

TuringMachine ::= < Alphabet, Tape, FSM >
L Alphabet ::= { Symbol*}
_.QEI Tape ::= < LeftSide, Current, RightSide >
- = OneSquare ::= Symbol | #
Current ::= OneSquare
=< = LeftSide ::= [Square*]
Finite State Machine | R/ghtSide ::= [Square*]

Everything to left of LeftSideis #.
Everything to right of RightSideis #.

- .
CS150 Fall 2005 Lecture 27: Universal Turing Machines 2 fii Compuf‘eyr Sctegce

Example
Turing
Machine

TuringMachine ::= < Alphabet, Tape, FSM >
FSM ::= < States, TransitionRules, InitialState, HaltingStates >
Alphabet ::= {(,), X}
States ::= { 1,2, HALT }
InitialState ::= 1
HaltingStates ::= { HALT }
TransitionRules ::= { < 1,),2, X,L>,
<1, # HALT, 1, # >,
<1,-), # R>,
<2,(1,X,R>,
<2, #,HALT, 0, # >,
<2,), #,L>}

CS150 Fall 2005: Lecture 27: Universal Turing Machines

IN

—
iy Computer {

Universal Turing Machine

e TM-5023582376 |= balancing parens

e TM-57239683 = even number of 1s

® TM-bosmssmossemsss | = Photomosaic Program
0 TM-h s | = WINAOWSXP

Not the real
numbers — they
would be much

bigger!

CS150 Fall 2005: Lecture 27: Universal Turing Machines

= -
s_fiilj Computer Science,

P
Number~| Universal ?“‘p“‘
of TM ape

/ _—

Input

Turing
Machine

— for running

Tape

also, just a number!

Can we make a Universal Turing Machine?

T™M-P
in tape /

CS150 Fall 2005: Lecture 27: Universal Turing Machines

= -
6 iy Computer Science |

Yes!

¢ People have designed Universal Turing
Machines with
—4 symbols, 7 states (Marvin Minsky)
—4 symbols, 5 states
—2 symbols, 22 states
— 18 symbols, 2 states
— 2 states, 5 symbols (Stephen Wolfram)

¢ No one knows what the smallest possible
UTM is

CS150 Fall 2005: Lecture 27: Universal Turing Machines

= -
7_fiilj Computer Science,

Church-Turing Thesis
« Any mechanical computation can be
performed by a Turing Machine
e There is a TM-77 corresponding to every
decidable problem

¢ We can simulate one step on any “normal”
(classical mechanics) computer with a
constant number of steps on a TM:

—If a problem is in P on a TM, it is in P on an iMac,
CM5, Cray, Palm, etc.

— But maybe not a quantum computer! (later class)

CS150 Fall 2005: Lecture 27: Universal Turing Machines

= -
o il Computer Science

Complexity in Scheme
s SpeCiaI Forms If we have lazy evaluation and
—if cond define etc don’t care about abstraction,
4 4 4 " | we don't need these.
e Primitives
— Numbers (infinitely many)
—Booleans: #t, #f Hard to get rid of? |
- Functions (+, -, and, or, etc.)
¢ Evaluation Complexity
— Environments (more than 2 of our eval code)

| Can we get rid of all this and still have a useful language? |

-
CS150 Fall 2005: Lecture 27: Universal Turing Machines 11 i Compuf‘eyr S

Manchester llluminated Universal Turing Machine, #9
from http://www.verostko.com/manchester/manchester.html

- .
CS150 Fall 2005 Lecture 27: Universal Turing Machines 8 fiili Compuf‘eyr Sctegce

Universal Language

¢ Is Scheme as powerful as a Universal
Turing Machine?

« Is a Universal Turing Machine as powerful
as Scheme?

- P
€S150 Fall 2005: Lecture 27: Universal Turing Machines 10 il Comput‘e]r Scne{lce
g bt e

A-calculus
Alonzo Church, 1940

(LISP was developed from A-calculus,
not the other way round.)

term = variable
| term term
| (term)

| A variable . term

- .
CS150 Fall 2005 Lecture 27: Universal Turing Machines 12 i Compuf‘eyr Sctegce

What is Calculus?

e In High School:
d/dx x" = nx"! [Power Rule]
d/dx (f + g) = d/dx f + d/dx g [Sum Rule]

Calculus is a branch of mathematics that
deals with limits and the differentiation
and integration of functions of one or
more variables...

- .
CS150 Fall 2005 Lecture 27: Universal Turing Machines 13 i Compuf‘e’r Sctegce

Lambda Calculus

¢ Rules for manipulating strings of
symbols in the language:
term = variable
| term term
| (term)
| A variable . term
¢ Humans can give meaning to those
symbols in a way that corresponds to
computations.

- P
€S150 Fall 2005: Lecture 27: Universal Turing Machines 15 il Comput‘e]r Scne{;ce

Evaluation Rules

a-reduction (renaming)
Ay. M =, . (M [ya v])
where v does not occur in M.

B-reduction (substitution)
(Ax. M)N = M [xo N]

Real Definition

* A calculus is just a bunch of rules for
manipulating symbols.

¢ People can give meaning to those
symbols, but that’s not part of the
calculus.

« Differential calculus is a bunch of rules
for manipulating symbols. There is an
interpretation of those symbols
corresponds with physics, slopes, etc.

CS150 Fall 2005: Lecture 27: Universal Turing Machines

= -
14_fimj Computer Science |

Why?

¢ Once we have precise and formal rules for
manipulating symbols, we can use it to
reason with.

¢ Since we can interpret the symbols as
representing computations, we can use it
to reason about programs.

CS150 Fall 2005: Lecture 27: Universal Turing Machines

= -
16_fjig Computer Science |

Reduction (Uninteresting Rules)

Ay. M — Av. (M [yo v])
where v does not occur in M.

M—->M
M — N= PM — PN
M — N = MP — NP
M—>N=Mx.M— M. N
M—>NandN —>P=>M—>P

- .
CS150 Fall 2005 Lecture 27: Universal Turing Machines 17 il Comput‘e’r Sctegce

- .
CS150 Fall 2005 Lecture 27: Universal Turing Machines 18 il Comput‘e’r Sctegce

B-Reduction
(the source of all computation)

(Ax. M)N > M [xo N]

Evaluating Lambda Expressions

e redex: Term of the form (Ax. M)N
Something that can be B-reduced

e An expression is in normal form if it
contains no redexes (redices).

e To evaluate a lambda expression, keep
doing reductions until you get to normal
form.

- .
CS150 Fall 2005 Lecture 27: Universal Turing Machines 19 il Compuf‘eyr Sctegce

- .
CS150 Fall 2005 Lecture 27: Universal Turing Machines 20 il Compuf‘eyr Sctegce

Recall Apply in Scheme

“To apply a procedure to a list of
arguments, evaluate the procedure in a
new environment that binds the formal
parameters of the procedure to the
arguments it is applied to.”

¢ We've replaced environments with
substitution.

* We've replaced eval with reduction.

Some Simple Functions

I=)Axx
C = Axy.yx
Abbreviation for Ax.(Ay. yx)
CII = (Ax.(Ay. yx)) (Ax.x) (Ax.x)
—p Ay, y Axx)) (Ax.x)
—g Ax.x (Ax.x)
—g Ax.x
=1

- P
€S150 Fall 2005: Lecture 27: Universal Turing Machines 21 i Comput‘e]r Scne{lce
g bt e

CS150 Fall 2005: Lecture 27: Universal Turing Machines

= -
22 iy Computer Science

Example

A fo (A xof (xx) (A x. f (xx)))

Try this one at home...

Institute of Mathematical Science presents: His irsveront and pointed comments entrtan as wel as educate
les Seife, Philsdielphia Inquirer
Professor, Author, Newspaper Columnist, and Public Speaker

John Allen Paulos

formatian, full of insights.
erican Math. ffonthl)

ise little book.
~Josl Achenbach, Washington Post

i
By
p nging collection of musings on mathematics, the
i

jon Van, Chicago

A Mathematician Reads the Newspaper
ssked mathematician on a whits horss
cated Caluraiet

“Molly

inesistible
~Rudy Rucker, Scientific American

Structured like a newspaper, the talk and the book on which it's based investigate
the mathematical angles of stories in the news and offer novel perspectives,
questions, and ideas to those who can't get along without their daily paper.

Wednesday, October 26, 7:30pm
Physics Building, Room 203
University of Virginia, Charlottesville, Virginia

- .
CS150 Fall 2005 Lecture 27: Universal Turing Machines 23 fiii Compuf‘eyr Sctegce

- .
CS150 Fall 2005 Lecture 27: Universal Turing Machines 24 fii Compuf‘eyr Sctegce

Charge
¢ PS6 Due Monday
e PS7/PS8 Out Monday
— PS8: “"Make a dynamic web application”
—PS7: Learn to use tools you will use for PS8

—If you have a group and idea in mind for PS8
soon enough, you may not need to do PS7

¢ Friday:
— Computability in Theory and Practice
— Making Primitives using Lambda Calculus

- .
CS150 Fall 2005 Lecture 27: Universal Turing Machines 25 {iii Compuf‘e’r Sctegce

