
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Class 27:
Universal
Turing
Machines

2CS150 Fall 2005: Lecture 27: Universal Turing Machines

Turing Machine (1936)

z z z z z z z z z z z z z z z zz z z z

TuringMachine ::= < Alphabet, Tape, FSM >

Alphabet ::= { Symbol* }

Tape ::= < LeftSide, Current, RightSide >
OneSquare ::= Symbol | #
Current ::= OneSquare
LeftSide ::= [Square*]
RightSide ::= [Square*]

Everything to left of LeftSide is #.

Everything to right of RightSide is #.

1

Start

HALT

), X, L

2: look
for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

3CS150 Fall 2005: Lecture 27: Universal Turing Machines

Describing Finite State Machines

TuringMachine ::= < Alphabet, Tape, FSM >
FSM ::= < States, TransitionRules, InitialState, HaltingStates >
States ::= { StateName* }
InitialState ::= StateName must be element of States
HaltingStates ::= { StateName* }all must be elements of States
TransitionRules ::= { TransitionRule* }
TransitionRule ::=
< StateName, ;; Current State
OneSquare, ;; Current square
StateName, ;; Next State
OneSquare, ;; Write on tape
Direction > ;; Move tape

Direction ::= L, R, #

Transition Rule is a procedure:

Inputs: StateName, OneSquare
Outputs: StateName, OneSquare,

Direction

4CS150 Fall 2005: Lecture 27: Universal Turing Machines

Example
Turing
Machine

TuringMachine ::= < Alphabet, Tape, FSM >
FSM ::= < States, TransitionRules, InitialState, HaltingStates >
Alphabet ::= { (,), X }

States ::= { 1, 2, HALT }
InitialState ::= 1

HaltingStates ::= { HALT }
TransitionRules ::= { < 1,), 2, X, L >,

< 1, #, HALT, 1, # >,

< 1, ¬), #, R >,
< 2, (, 1, X, R >,

< 2, #, HALT, 0, # >,

< 2, ¬), #, L >,}

1Start

HALT

), X, L

2: look
for (

¬), #, R ¬(, #, L

(, X, R

#, 0, ##, 1, #

5CS150 Fall 2005: Lecture 27: Universal Turing Machines

Enumerating Turing Machines

• Now that we’ve decided how to describe
Turing Machines, we can number them

• TM-5023582376 = balancing parens

• TM-57239683 = even number of 1s

• TM-3523796834721038296738259873 = Photomosaic Program

• TM-3672349872381692309875823987609823712347823 = WindowsXP
Not the real

numbers – they
would be much

bigger!

6CS150 Fall 2005: Lecture 27: Universal Turing Machines

Universal Turing Machine

Universal
Turing
Machine

P

Number
of TM

I

Input

Tape
also, just a number!

Output

Tape
for running

TM-P
in tape I

Can we make a Universal Turing Machine?

2

7CS150 Fall 2005: Lecture 27: Universal Turing Machines

Yes!

• People have designed Universal Turing
Machines with

– 4 symbols, 7 states (Marvin Minsky)

– 4 symbols, 5 states

– 2 symbols, 22 states

– 18 symbols, 2 states

– 2 states, 5 symbols (Stephen Wolfram)

• No one knows what the smallest possible
UTM is

8CS150 Fall 2005: Lecture 27: Universal Turing Machines

Manchester Illuminated Universal Turing Machine, #9

from http://www.verostko.com/manchester/manchester.html

9CS150 Fall 2005: Lecture 27: Universal Turing Machines

Church-Turing Thesis
• Any mechanical computation can be
performed by a Turing Machine

• There is a TM-n corresponding to every
decidable problem

• We can simulate one step on any “normal”
(classical mechanics) computer with a
constant number of steps on a TM:

– If a problem is in P on a TM, it is in P on an iMac,
CM5, Cray, Palm, etc.

– But maybe not a quantum computer! (later class)

10CS150 Fall 2005: Lecture 27: Universal Turing Machines

Universal Language

• Is Scheme as powerful as a Universal
Turing Machine?

• Is a Universal Turing Machine as powerful
as Scheme?

11CS150 Fall 2005: Lecture 27: Universal Turing Machines

Complexity in Scheme
• Special Forms

– if, cond, define, etc.

• Primitives

– Numbers (infinitely many)

– Booleans: #t, #f

– Functions (+, -, and, or, etc.)

• Evaluation Complexity

– Environments (more than ½ of our eval code)

Can we get rid of all this and still have a useful language?

If we have lazy evaluation and

don’t care about abstraction,

we don’t need these.

Hard to get rid of?

12CS150 Fall 2005: Lecture 27: Universal Turing Machines

λ-calculus

Alonzo Church, 1940
(LISP was developed from λ-calculus,
not the other way round.)

term = variable

| term term

| (term)

| λλλλ variable . term

3

13CS150 Fall 2005: Lecture 27: Universal Turing Machines

What is Calculus?

• In High School:

d/dx xn = nxn-1 [Power Rule]

d/dx (f + g) = d/dx f + d/dx g [Sum Rule]

Calculus is a branch of mathematics that
deals with limits and the differentiation
and integration of functions of one or
more variables...

14CS150 Fall 2005: Lecture 27: Universal Turing Machines

Real Definition

• A calculus is just a bunch of rules for
manipulating symbols.

• People can give meaning to those
symbols, but that’s not part of the
calculus.

• Differential calculus is a bunch of rules
for manipulating symbols. There is an
interpretation of those symbols
corresponds with physics, slopes, etc.

15CS150 Fall 2005: Lecture 27: Universal Turing Machines

Lambda Calculus

• Rules for manipulating strings of
symbols in the language:

term = variable

| term term

| (term)

| λλλλ variable . term

• Humans can give meaning to those
symbols in a way that corresponds to
computations.

16CS150 Fall 2005: Lecture 27: Universal Turing Machines

Why?

• Once we have precise and formal rules for
manipulating symbols, we can use it to
reason with.

• Since we can interpret the symbols as
representing computations, we can use it
to reason about programs.

17CS150 Fall 2005: Lecture 27: Universal Turing Machines

Evaluation Rules

α-reduction (renaming)

λy. M ⇒α λv. (M [y v])

where v does not occur in M.

β-reduction (substitution)

(λx. M)N ⇒ β M [x N]α

α

18CS150 Fall 2005: Lecture 27: Universal Turing Machines

Reduction (Uninteresting Rules)
λy. M → λv. (M [y v])

where v does not occur in M.

M → M

M → N ⇒ PM → PN

M → N ⇒ MP → NP

M → N ⇒ λx. M → λx. N

M → N and N → P ⇒ M → P

α

4

19CS150 Fall 2005: Lecture 27: Universal Turing Machines

β-Reduction
(the source of all computation)

(λx. M)N → M [x N]α

20CS150 Fall 2005: Lecture 27: Universal Turing Machines

Evaluating Lambda Expressions

• redex: Term of the form (λx. M)N

Something that can be β-reduced

• An expression is in normal form if it
contains no redexes (redices).

• To evaluate a lambda expression, keep
doing reductions until you get to normal
form.

21CS150 Fall 2005: Lecture 27: Universal Turing Machines

Recall Apply in Scheme

“To apply a procedure to a list of
arguments, evaluate the procedure in a
new environment that binds the formal
parameters of the procedure to the
arguments it is applied to.”

• We’ve replaced environments with
substitution.

• We’ve replaced eval with reduction.

22CS150 Fall 2005: Lecture 27: Universal Turing Machines

Some Simple Functions

I ≡ λx.x

C ≡ λxy.yx

Abbreviation for λx.(λy. yx)

CII = (λx.(λy. yx)) (λx.x) (λx.x)

→β (λy. y (λx.x)) (λx.x)

→β λx.x (λx.x)

→β λx.x

= I

23CS150 Fall 2005: Lecture 27: Universal Turing Machines

Example

λ f. ((λ x.f (xx)) (λ x. f (xx)))

Try this one at home...

24CS150 Fall 2005: Lecture 27: Universal Turing Machines

5

25CS150 Fall 2005: Lecture 27: Universal Turing Machines

Charge
• PS6 Due Monday

• PS7/PS8 Out Monday

– PS8: “Make a dynamic web application”

– PS7: Learn to use tools you will use for PS8

– If you have a group and idea in mind for PS8
soon enough, you may not need to do PS7

• Friday:

– Computability in Theory and Practice

– Making Primitives using Lambda Calculus

