
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 4:
Programming
with Data

2CS150 Fall 2005: Lecture 4: Programming with Data

Menu

• Evaluation Question from Monday

• Programming with Data

• Take Pictures

3CS150 Fall 2005: Lecture 4: Programming with Data

(square 4)
Eval Rule 3a: Application

square 4

Eval Rule 2: Names

(lambda (x) (* x x))

Eval Rule 1: Primitive

4 Eval Rule 3b: Application

Apply Rule 2: Compound Application

(* 4 4) Eval Rule 3a: Application

* 4 4
Eval Rule 1: Primitive Eval Rule 1: Primitive

44#<primitive:*> Eval Rule 3b: Application

Apply Rule 1: Primitive Application

16

4CS150 Fall 2005: Lecture 4: Programming with Data

Ways to Design Programs

1. Think about what you want to do, and
turn that into code.

2. Think about what you need to
represent, and design your code
around that.

Which is better?

5CS150 Fall 2005: Lecture 4: Programming with Data

History of Scheme

• Scheme [Guy Steele & Gerry Sussman, 1975]

Guy Steele co-designed Scheme and created the
first Scheme interpreter for his 4th year project

More recently, Steele specified Java [1995]

– “Conniver” [1973] and “Planner” [1967]

• Based on LISP [John McCarthy, 1958]

–Based on Lambda Calculus

–Alonzo Church, 1930s

–Last few lectures in course

6CS150 Fall 2005: Lecture 4: Programming with Data

LISP

“Lots of Insipid Silly Parentheses”

“LISt Processing language”

Lists are pretty important – hard to
write a useful Scheme program
without them.

2

7CS150 Fall 2005: Lecture 4: Programming with Data

Making Lists

8CS150 Fall 2005: Lecture 4: Programming with Data

Making a Pair

> (cons 1 2)

(1 . 2)

cons constructs a pair

1 2

9CS150 Fall 2005: Lecture 4: Programming with Data

Splitting a Pair

> (car (cons 1 2))

1

> (cdr (cons 1 2))

2

car extracts first part of a pair

cdr extracts second part of a pair

1 2

car cdr

10CS150 Fall 2005: Lecture 4: Programming with Data

Why “car” and “cdr”?
• Original (1950s) LISP on IBM 704

– Stored cons pairs in memory registers

– car = “Contents of the Address part of the
Register”

– cdr = “Contents of the Decrement part of the
Register” (“could-er”)

• Doesn’t matter unless you have an IBM 704

• Think of them as first and rest

(define first car)

(define rest cdr)

(The DrScheme “Pretty Big” language
already defines these, but they are not part

of standard Scheme)

11CS150 Fall 2005: Lecture 4: Programming with Data

Pairs are fine, but how do
we make threesomes?

12CS150 Fall 2005: Lecture 4: Programming with Data

Triple

A triple is just a pair where one of the
parts is a pair!

(define (triple a b c)

(cons a (cons b c)))

(define (t-first t) (car t))

(define (t-second t) (car (cdr t)))

(define (t-third t) (cdr (cdr t)))

3

13CS150 Fall 2005: Lecture 4: Programming with Data

Quadruple

A quadruple is a pair where the second
part is a triple

(define (quadruple a b c d)
(cons a (triple b c d)))

(define (q-first q) (car q))
(define (q-second q) (t-first (cdr t)))
(define (q-third t) (t-second (cdr t)))
(define (q-fourth t) (t-third (cdr t)))

14CS150 Fall 2005: Lecture 4: Programming with Data

Multuples

• A quintuple is a pair where the second part is
a quadruple

• A sextuple is a pair where the second part is
a quintuple

• A septuple is a pair where the second part is
a sextuple

• An octuple is group of octupi

• A ? is a pair where the second part is a …?

15CS150 Fall 2005: Lecture 4: Programming with Data

Lists

List ::= (cons Element List)

A list is a pair where the second part is a list.

One big problem: how do we stop?
This only allows infinitely long lists!

16CS150 Fall 2005: Lecture 4: Programming with Data

Lists

List ::= (cons Element List)

List ::=

A list is either:
a pair where the second part is a list

or, empty

It’s hard to write this!

17CS150 Fall 2005: Lecture 4: Programming with Data

Null

List ::= (cons Element List)

List ::=

A list is either:
a pair where the second part is a list

or, empty (null)

null

18CS150 Fall 2005: Lecture 4: Programming with Data

List Examples

> null
()
> (cons 1 null)
(1)
> (list? null)
#t
> (list? (cons 1 2))
#f
> (list? (cons 1 null))
#t

4

19CS150 Fall 2005: Lecture 4: Programming with Data

More List Examples

> (list? (cons 1 (cons 2 null)))
#t
> (car (cons 1 (cons 2 null)))
1
> (cdr (cons 1 (cons 2 null)))
(2)

20CS150 Fall 2005: Lecture 4: Programming with Data

Recap

• A list is either:

a pair where the second part is a list

or null (note: book uses nil)

• Pair primitives:

(cons a b) Construct a pair <a, b>

(car pair) First part of a pair

(cdr pair) Second part of a pair

21CS150 Fall 2005: Lecture 4: Programming with Data

Problem Set 2:
Programming with Data

• Representing a card

car cdr

Pair of rank (Ace) and suit (Spades)

22CS150 Fall 2005: Lecture 4: Programming with Data

Problem Set 2:
Programming with Data

• Representing a card: (cons <rank> <suit>)

• Representing a hand

(list (make-card Ace clubs)
(make-card King clubs)
(make-card Queen clubs)
(make-card Jack clubs)
(make-card 10 clubs)

23CS150 Fall 2005: Lecture 4: Programming with Data

Charge

• You know everything you need for PS2

• Friday, next week - lots of examples of:

– Programming with data

– Programming with procedures

– Recursive definitions

• But, if you understand the Scheme
evaluation rules, you know it all already!

Please don’t leave until I take your picture!

