
Chapter 10

Objects

By the word operation, we mean any process which alters the mutual relation of two or more

things, be this relation of what kind it may. This is the most general definition, and would

include all subjects in the universe. Again, it might act upon other things besides number,

were objects found whose mutual fundamental relations could be expressed by those of the

abstract science of operations, and which should be also susceptible of adaptations to the

action of the operating notation and mechanism of the engine... Supposing, for instance,

that the fundamental relations of pitched sounds in the science of harmony and of musical

composition were susceptible of such expression and adaptations, the engine might compose

elaborate and scientific pieces of music of any degree of complexity or extent.

Ada Byron, Countess of Lovelace (around 1843)

So far, we have seen two different approaches for using computing to solve prob-

lems:

• Functional programming (introduced in Chapter 4) — to solve a complex

problem, break it into a group of simpler procedures and find a way to com-

pose those procedures to solve the problem.

• Imperative (data-centric) programming (introduced in Chapter 5, and ex-

tended with state mutation in the previous chapter) — to solve a complex

problem, think about how to represent the data the problem involves, and

develop procedures to manipulate that data.

In fact, all computational problems involve both data and procedures. All proce-

10-1



10-2 CHAPTER 10. OBJECTS

dures act on some form of data; without data they can have no meaningful inputs

and outputs. Any data-based design must involve some procedures to manipu-

late that data; otherwise, we can only represent static values, and cannot perform

any computation. In this chapter, we will overcome a weakness of previous ap-

proaches, namely, that the data and the procedures that manipulate it are separate.

Packaging procedures and data together leads to a new approach to problem solv-

ing, known as object-oriented programming.

Unlike many modern languages, Scheme1 provides no built-in support for objects.

Instead, we create an object system ourselves using simpler expressions (primarily

the procedure-making lambda expressions). By building an object system from

simple components, we provide a clearer and deeper understanding of how other

object systems work.

10.1 Packaging Procedures and State

Recall our counter from Section 9.1.2. The update-counter! procedure

increments the value of the counter variable, which is stored in the global en-

vironment, and evaluates to the resulting counter value. Every time an application

of update-counter! is evaluated, we expect to obtain a value one larger than

the previous application. This only works, however, if there are no other evalua-

tions that modify the counter variable. Using this implementation, we can only

have one counter: there is only one counter place in the global environment. If

we want to have a second counter, we would need to define a new variable (such

as counter2, and implement a new procedure, update-counter2!, that is

identical to update-counter!, but manipulates counter2 instead. For each

new counter, we would need a new variable and a new procedure. This is possible,

but clearly unsatisfactory.

Instead, what would be more useful is if we could package the counter variable

with the procedure that manipulates it. This would create a counter object, and

we could create as many as we want, each with its own counter variable to ma-

nipulate. The new application rule (from Section 9.1.4) provides a way to do this.

Evaluating an application creates a new environment, so if the counter variable is

1This means the standard Scheme language, not the extended Scheme languages provided by

DrScheme. The MzScheme language does provide additional constructs for supporting objects.



10.1. PACKAGING PROCEDURES AND STATE 10-3

defined in the new environment it will be visible only to the procedure body. The

make-counter procedure below creates a counter object.

(define (make-counter)

((lambda (count)

(lambda ()

(set! count (+ 1 count))

count))

0))

This is equivalent to the definition below, which uses a let expression to make the

initialization of count clearer:

(define (make-counter)

(let ((count 0))

(lambda ()

(set! count (+ 1 count))

count)))

Figure 10.1 depicts the environment after evaluating:

(define counter1 (make-counter))

(define counter2 (make-counter))

(counter1)

The procedure for manipulating the counter state is now packaged with the state

it manipulates (the count variable in the let expression). Each application of

make-counter creates a new frame containing its own count place. This

is known as encapsulation. The count place is encapsulated with the counter

object. Whereas the previous counter used the global environment to store the

counter in a way that could be manipulated by other expressions, this version

encapsulates the counter variable with the counter object in a way that the only

way to manipulate the counter value is to use the counter object. The evaluation

of (counter1) increments the value in the count place associated with the

counter1 procedure’s environment.



10-4 CHAPTER 10. OBJECTS

Figure 10.1: Packaging procedures and state.

10.1.1 Messages

The counter object is limited to only one behavior — the object is a procedure that

takes no parameters, and every time it is applied the associated count variable is

increased by one and the new value is output. To produce more interesting objects,

we need a way to combine state with more than one procedure. For example, we

might want a counter that can perform several behaviors including resetting the

count, incrementing the count, and providing the current count.

We can do this by modifying our make-counter procedure to produce a pro-

cedure that takes one parameter. The input parameter to the resulting procedure is

a message used to select one of the behaviors.

(define (make-counter)

(let ((count 0))

(lambda (message)

(cond ((eq? message ’reset!)

(set! count 0))



10.1. PACKAGING PROCEDURES AND STATE 10-5

((eq? message ’next!)

(set! count (+ 1 count)))

((eq? message ’current)

count)

(else (error "Unrecognized message"))))))

As with the earlier make-counter, the new make-counter procedure pro-

duces a procedure with an environment that contains a frame containing a place

named count initialized to 0. The procedure takes a message parameter, and

its body is a conditional expression that produces a different behavior depending

on the input message. The input is a symbol, a sequence of characters preceded

by a quote, ’. Two symbols are equal (as determined by the eq? procedure) if the

sequence of characters after the quote is identical. Symbols are a more convenient

and efficient way of selecting the object behavior than strings would be, and easier

to remember and understand than using numbers.

Here are some sample interactions using the object produced by make-counter:

> (define counter (make-counter))

> (counter ’current)

0

> (counter ’next!)

> (counter ’next!)

> (counter ’current)

2

> (counter ’reset!)

> (counter ’current)

0

> (counter ’previous!)

] Unrecognized message

A more natural way of interacting with objects is to define a generic procedure

that takes an object and a message as its parameters, and send the message to the

object. The ask procedure defined below is a simple procedure for doing this;

later in this chapter, we will develop more complex versions of the ask procedure

that allow us to define a more powerful object model.

(define (ask object message)



10-6 CHAPTER 10. OBJECTS

(object message))

Our ask procedure simply applies the object input to the message input.

Using the ask procedure, the interactions above could be expressed as:

> (define counter (make-counter))

> (ask counter ’current)

0

> (ask counter ’next!)

> (ask counter ’next!)

> (ask counter ’current)

2

> (ask counter ’reset!)

> (ask counter ’current)

0

> (ask counter ’previous!)

] Unrecognized message

It is useful to sometime have behaviors that take additional parameters. For ex-

ample, we may want to support a message adjust! that can add an input value

to the counter. To suppose such behaviors, we generalize the behaviors so that the

result of matching behavior is a procedure. The procedures for reset!, next!,

and current take no parameters; the procedure for adjust! takes one param-

eter.

(define (make-counter)

(let ((count 0))

(lambda (message)

(cond ((eq? message ’reset!)

(lambda () (set! count 0)))

((eq? message ’next!)

(lambda () (set! count (+ 1 count))))

((eq? message ’current)

(lambda () count))



10.1. PACKAGING PROCEDURES AND STATE 10-7

((eq? message ’adjust!)

(lambda (val) (set! count (+ count val))))

(else (error "Unrecognized message"))))))

To make this work, we need to also change the ask procedure to pass in the

extra arguments. So far, all the procedures we have seen take a fixed number

of operands. To allow ask to work for procedures that take a variable number

of arguments, we use a new define construct. If we precede last parameter in a

parameter list with a ., it means that all the rest of the operands will be combined

into a list, and the value of that list will be bound to the last parameter name.

To apply the procedure we use the apply primitive procedure which takes two

inputs, a procedure and an operand list. It applies the procedure to the operands,

extracting them from the list as each operand in order.

(define (ask object message . args)

(apply (object message) args))

We can use the new ask procedure to invoke methods with any number of argu-

ments:

> (define counter (make-counter))

> (ask counter ’current)

0

> (ask counter ’adjust! 5)

> (ask counter ’current)

5

> (ask counter ’next!)

> (ask counter ’current)

6

10.1.2 Object Terminology

An object is an entity that packages state and procedures. We call the state that

is part of an object its instance variables, and the procedures that are part of an

object its methods. Methods may give information about the state of an object (we

call these observers or modify the state of an object (we call these mutators. Our



10-8 CHAPTER 10. OBJECTS

counter object provides four methods: reset! (a mutator), next! (a mutator),

adjust! (a mutator), and current (an observer).

We also need procedures for creating new objects, such as the make-counter

procedure above. We call these procedures constructors. Once an object is cre-

ated, it is only manipulated by using the object’s methods. We invoke a method

of an object by sending the object a message. This is analogous to applying a

procedure.

A class is a kind of object. By convention, we call the constructor for a class,

make-class. Hence, an object of the counter class is the result produced

when the make-counter procedure is applied.

Exercise 10.1. Modify the make-counter definition to add a previous!

method that decrements the counter value by one. ♦

Exercise 10.2. In Section 8.1.4 we developed a tree representation using cons

pairs. This approach is simple and was adequate for our purposes (implementing

a sorting procedure), but provides no encapsulation. For this exercise, you are to

develop an object for representing trees.

a. Define a make-tree constructor that creates a tree object. The constructor

should take three parameters, the left, element, and right, where the

element is a value, and left and right are tree objects. Your tree class

should have methods for getting the element of a tree node, getting the left

child, and getting the right child.

b. Rewrite the insert-sort-tree procedure from Section 8.1.4 to use your

new tree object instead of the earlier tree representation that used cons pairs.

You will have to think carefully about how to represent the null tree.

c. Discuss the differences between the two implementations. What are the advan-

tages and disadvantages of using the tree object?

d. Make your tree object mutable by defining the methods for setting the left

subtree, right subtree, and elements (i.e., set-left!, set-right!, and

set-element!. Can these be used to improve your insert-sort-tree

implementation?

♦



10.2. INHERITANCE 10-9

10.2 Inheritance

One of the appeals of objects is they can be used to represent objects in a real or

imagined world that a program is modeling. Objects are particularly well-suited

to programs that such as graphical user interfaces (modeling windows, files, and

folders on a desktop), simulations (modeling physical objects in the real world

and their interactions), and games (modeling creatures and things in an imagined

world).

Objects in the real world, or a simulated world, are complex. Suppose we are

implementing a game that simulates a typical university. It will involve many

different kinds of objects including places (which are stationary and may contain

other objects), things, and people. There are many different kinds of people, such

as students and professors. All objects in our game have a name and a location;

some objects have methods for talking and moving. We could define classes in-

dependently for all of the object types, but this would involve a lot of duplicate

effort. It would also make it hard to add a new behavior to all of the objects in the

game without modifying many different procedures.

The solution is to define more specialized kinds of objects using the definitions of

other objects. For example, a student is a kind of person, which is a kind of

movable-object, which is a kind of sim-object (simulation object). To

implement the student class, we would like to use methods from the person

class without needing to duplicate them in the student implementation. We call

the more specialized class (in this case the student class) the subclass, and the

more general class (in this case the person class) the superclass. That is to say,

student is a subclass of person, and person is a superclass of student.

When one class implementation uses the methods from another class we say the

subclass inherits from the superclass.

Figure 10.2 illustrates some possible inheritance relationships for a university sim-

ulator. The arrows point from subclasses to their superclass. Note that a class may

be both a subclass to another class, and a superclass to a different class. For exam-

ple, person is a subclass of movable-object, but a superclass of student

and professor. The inheritance relationships can continue up the tree. The

superclass of movable-object is sim-object.

Our goal is to be able to reuse superclass methods in subclasses. When a method is

invoked in a subclass, if the subclass does not provide a definition of the method,



10-10 CHAPTER 10. OBJECTS

Figure 10.2: Inheritance Hierarchy.

then the definition of the method in the superclass is used. This can continue

up the inheritance chain. For instance, student inherits from person, which

inherits from movable-object, which inherits from sim-object. This

means if sim-object provides a get-name method, when the get-name

method is invoked of a student object, the implementation of get-name in

the sim-object class will be used (as long as none of the other classes replace

the method). If a subclass replaces a method defined by its superclass, then the

subclass method overrides the superclass method. When the method is invoked

on a subclass object, the new method will be used.

To implement inheritance we need to change class definitions so that if a requested

method is not defined by the subclass, the superclass method will be used. The

make-subobject procedure does this. It takes two inputs: the superclass ob-

ject and the implementation of the subclass. It produces a new subclass object.

When the resulting object is applied to a message, it will first apply the subclass

implementation to the message to find an appropriate method if one is defined. If

no method is defined by the subclass implementation, it produces the result of ap-

plying the superclass object to the message. Sometimes it will be useful to obtain

the superclass object. The make-subobject defines the super method for



10.2. INHERITANCE 10-11

doing this. Every subclass object created using make-subobject will have a

method super defined that produces the superclass object.

(define (make-subobject super imp)

(lambda (message)

(if (eq? message ’super)

(lambda (self) super)

(let ((method (imp message)))

(if method

method

(super message))))))

It is useful to add an extra parameter to all methods so the object on which the

method was invoked is visible. We call this the self object (in some languages

it is called the this object instead). To support this, the ask procedure is modified

to pass in the object parameter to the method:

(define (ask object message . args)

(apply (object message) object args))

All methods now take the self object as their first parameter, and may take addi-

tional parameters. For instance, we define the counter constructor procedure:

(define (make-counter)

(let ((count 0))

(lambda (message)

(cond ((eq? message ’reset!)

(lambda (self) (set! count 0)))

((eq? message ’next!)

(lambda (self) (set! count (+ 1 count))))

((eq? message ’current)

(lambda (self) count))

((eq? message ’adjust!)

(lambda (self val) (set! count (+ count val))))

(else (error "Unrecognized message"))))))



10-12 CHAPTER 10. OBJECTS

We can use make-subobject to create an object that inherits the behaviors

from one class, and extends those behaviors by defining new methods in the

subclass implementation. For example, make-pcounter below defines the

pcounter class which extends the counter class with a previous! method.

(define (make-pcounter)

(make-subobject

(make-counter)

(lambda (message)

(if (eq? message ’previous!)

(lambda (self)

(ask self ’adjust! -1))

#f))))

The pcounter object defines a previous! method which provides a new

behavior. If the message is not ’previous!, however, it evaluates to #f. The

make-subobject procedure will apply the superclass object to the message

when the subclass implementation evaluates to false (that is, when the subclass

does not define a method for the input message). Hence, for all other messages,

the superclass method is used. Note that within the previous! method we use

ask to invoke the adjust! method on the self object. Since the subclass

implementation does not provide an adjust! method, this will result in the

superclass method being applied.

Suppose we define a subclass of pcounter that is not allowed to have negative

counter values. If the counter would reach a negative number, instead of setting the

counter to the new value, it produces an error message and maintains the counter

at zero. We can do this by overriding the adjust! method. This replaces the

superclass implementation of the method with a new implementation.

(define (make-poscounter)

(make-subobject

(make-pcounter)



10.2. INHERITANCE 10-13

(lambda (message)

(if (eq? message ’adjust!)

(lambda (self val)

(if (< (+ (ask self ’current) val) 0)

(error "Negative count")

(ask (ask self ’super) ’adjust! val)))

#f))))

Now, consider what happens when we evaluate:

> (define poscount (make-poscounter))

> (ask poscount ’next!)

> (ask poscount ’previous!)

> (ask poscount ’previous!)

] Negative count

> (ask poscount ’current)

0

For the first ask, the next! method is invoked on a poscounter object. Since

the poscounter implementation does not define a next! method, the mes-

sage is sent to the superclass, pcounter. The pcounter implementation also

does not define a next! method, so the message is passed up to its superclass,

counter. This class defines a next! method, so that method is used.

For the next ask, the previous! method is invoked. As before, the poscounter

implementation does not define a previous! method, so the message is sent

to the superclass. Here, pcounter does define a previous! method. Its

implementation involves an invocation of the adjust! method:

(ask self ’adjust! -1)

Note that this invocation is done on the self object, which is an instance of the

poscounter class. Hence, the adjust! method is found from the poscounter

class implementation. This is the method that overrides the adjust! method

defined by the counter class. Hence, the second invocation of previous!

produces the “Negative count” error and does not adjust the count to -1.

The property this object system has where the method invoked depends on the ob-

ject is known as dynamic dispatch. The method that will be used for an invocation



10-14 CHAPTER 10. OBJECTS

depends on the self object. In this case, for example, it means that when we

examine the implementation of the previous! method in the pcounter class

it is not possible to determine what procedure will be applied for the method invo-

cation, (ask self ’adjust! -1). It depends on the actual self object:

if it is a poscounter object, the adjust! method defined by poscounter

is used; if it is a pcounter object, the adjust! method defined by counter

(the superclass of pcounter) is used.

Dynamic dispatch provides for a great deal of expressiveness. It enables us to

use the same code to produce many different behaviors by overriding methods

in subclasses. This is very useful, but also very dangerous — it makes it im-

possible to reason about what a given procedure does, without knowing about all

possible subclasses. For example, we cannot make any claims about what the

previous! method in pcounter actually does, without knowing what the

adjust! method does in all subclasses of pcounter.

Exercise 10.3. Define a new subclass of poscounter where the increment for

each next! method application is a parameter to the constructor procedure. For

example, (make-var-counter 0.1) would produce a counter object whose

counter has value 0.1 after one invocation of the next! method. ♦

Exercise 10.4. Define a countdown class that simulates a rocket launch count-

down (that is, it starts at some intial value, and counts down to zero, at which

point the rocket is launched). Can you implement countdown as a subclass of

counter? ♦

10.3 Summary
I invented the term

“Object-Oriented” and I

can tell you I did not

have C++ in mind.
Alan Kay

An object is an entity that packages state and procedures that manipulate that state

together. By packaging state and procedures together, we can encapsulate state in

ways that enable more elegant and robust programs. Inheritance allows an imple-

mentation of one class to reuse or override methods in another class, known as its

superclass. Programming using objects and inheritance enables a style of prob-

lem solving known as object-oriented programming in which we solve problems

by modeling a problem instance using objects.


