
Chapter 4

Procedures

A great discovery solves a great problem, but there is a grain of discovery in the solution of

any problem. Your problem may be modest, but if it challenges your curiosity and brings into

play your inventive faculties, and if you solve it by your own means, you may experience the

tension and enjoy the triumph of discovery.

George Pólya

Computers are tools for performing computations. The reason we want to perform

a computation is to solve a problem. In this chapter, we consider what it means

to solve a problem and explore some strategies for constructing procedures that

solve problems.

4.1 Solving Problems

Traditionally, a problem is an obstacle to overcome or some question to answer.

Once the question is answered or the obstacle circumvented, the problem is solved

and we can move on to the next one. When we talk about writing programs to

solve problems, however, we usually have a larger goal. We don’t just want to

solve one instance of a problem, we want a procedure that can solve all instances

of a problem.

A problem is defined by its inputs and the desired property of the output. A

solution to a problem is a procedure that produces a correct output for all possible
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Figure 4.1: Procedure.

inputs to the problem, as shown in Figure 4.1.

For the procedure to be useful, it should also have the property that it always pro-

duces an output — that is, it always finishes executing. A procedure that solves a

problem and is guaranteed to always finish is called an algorithm. The name al-

gorithm is a Latinization of the name of the Persian mathematician and scientist,

Muhammad ibn Mūsā al-Khwārizmī, who published a book in 825 on calcula-

tion with Hindu numerals. Al-Khwārizmī was also the responsible for defining

algebra. Although the name was not adopted until after al-Khwārizmī’s book, al-

gorithms go back much further than that. The ancient Babylonians had algorithms

for finding square roots more than 3500 years ago1.

Some programs are intended to provide a service rather than just one output. For

example, a web server is a program that is intended to run forever, not to finish

and produce an output. It keeps running and responding to new requests as they

come in. Even programs that are services, however, involve algorithms. Each

individual web request is a problem, and the server program should respond to

it with a particular output (sending the requested page) within a finite amount of

time.

Our goal in solving a problem is to devise a procedure that takes inputs that define

a problem instance, and produces as output the solution to the problem. There

is no magic wand for solving all problems, but at its core most problem solving

involves breaking problems you does not yet know how to solve into simpler prob-

lems until you find problems simple enough that you already know how to solve

them. The trick is to find the right subproblems so that they can be combined to

1Donald E. Knuth, Ancient Babylonian Algorithms, Communications of the ACM, July 1972.
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Figure 4.2: Composition.

solve the original problem. The following sections describe a few techniques for

solving problems, and illustrate them with some simple examples. We will use

these same problem solving techniques over and over throughout this book. In the

examples here, we limit ourselves to simple data: all of the problems have one or

more numbers as their input, and produce a number as output. In the next chapter,

we introduce structured data and revisit these problem solving techniques.

4.2 Composing Procedures

One way to divide a problem is to split it into steps where the output of the first step

is the input to the second step, and the output of the second step is the solution to

the problem. Each step can be defined by one procedure, and the two procedures

can be combined to create one procedure that solves the problem.

Figure 4.2 shows a composition of two functions, f and g. The output of f is the

input to g. We can express this composition with the Scheme expression (g (f

x)) where x is the input.

The order appears to be reversed from Figure 4.2. That is because we apply a

procedure to the values of its subexpressions. That means although f appears to

the right of g in the expression, the subexpression (f x) is evaluated first since

the evaluation rule for the outer application expression is to first evaluate all the

subexpressions.

We can define a procedure that implements the composed procedure by making x

a parameter:
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(define fog (lambda (x) (g (f x))))

This defines fog as a procedure that takes one input and produces as output the

composition of f and g applied to the input parameter. The works for any two

procedures, as long as both procedures take a single input parameter. For example,

we could compose the square and cube procedures from Chapter 3 as:

(define sixth-power

(lambda (x) (cube (square x))))

So, (sixth-power 2) evaluates to 64.

4.2.1 Procedures as Inputs and Outputs

So far, all the inputs we have seen have been numbers. But, the subexpressions of

an application can be any expression including a procedure. We call a procedure

that takes other procedures as inputs or that produces a procedure as its output

a higher-order procedure. Higher-order procedures give us the ability to write

general procedures that behave differently based on not just number value inputs,

but based on procedures that are passed as inputs to the general procedure.

For example, we can create a generic composition procedure by making f and g

parameters:

(define fog (lambda (f g x) (g (f x))))

The fog procedure takes three parameters. The first two are both procedures that

take one input. The third parameter is a value (that can be the input to the first

procedure).

For example,

> (fog square cube 2)

64

> (fog (lambda (x) (+ x 1)) square 2)

9
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In the second example the first parameter is a new procedure,

(lambda (x) (+ x 1))

This procedure takes a number as input and produces as output that number plus

one. We define inc (short for increment) to name this procedure:

(define inc (lambda (x) (+ x 1)))

A more useful composition procedure would separate the input value, x, from the

composition. It takes two procedures as inputs and produce as output a procedure

that is their composition:

(define compose

(lambda (f g) (lambda (x) (g (f x)))))

The body of the compose procedure itself makes a procedure! Hence, the result

of applying compose to two procedures is not a simple value, but a procedure.

To get a value, we need to apply the result of the application of compose to a

value.

For example,

> (compose inc inc)

#<procedure>

> ((compose inc inc) 1)

3

> (define sixth-power (compose square cube))

> (sixth-power 3)

729

Exercise 4.1.

a. What does

(compose (lambda (x) (* x 2))

(lambda (x) (/ x 2)))
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evaluate to?

b. What does

((compose (lambda (x) (* x 2))

(lambda (x) (/ x 2))) 150)

evaluate to?

c. What does

((compose (compose inc inc) inc) 2)

evaluate to?

�

Exercise 4.2. Suppose we define self-compose as a procedure that composes

a procedure with itself:

(define (self-compose f) (compose f f))

Explain how

(((compose self-compose self-compose) inc) 1)

would be evaluated. �

Exercise 4.3. Define a procedure compose3 that takes three procedures as input,

and produces as output a procedure that is the composition of the three input pro-

cedures. For example, ((compose3 abs inc square) -5) should evalu-

ate to 36. Try defining compose3 first without using compose, and then define

it using compose. �
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Figure 4.3: Circular Composition.

4.3 Recursive Problem Solving

In the previous section, we used functional composition to break a problem into

two procedures that can be composed to produce the desired output. A particularly

useful variation on this is when we can break a problem into two problems, where

one of them is a smaller version of the original problem.

The goal is to be able to feed the output of one application of the procedure back

into the same procedure as its input for the next application, as shown in Fig-

ure 4.3. Here’s what this would look like in a Scheme procedure:

(define f (lambda (n) (f (- n 1))))

Of course, this doesn’t work very well!2 Every time an application of f is eval-

uated, it results in another application of f to evaluate. We keep evaluating new

applications, but never stop and can never produce an output.

What we need is a way of stopping. The circular applications could stop when the

input to the procedure is simple enough that we can produce the output without

needing another application of the procedure. This is called the base case, simi-

larly to the grammar rules in Section 2.4. In our grammar examples, the base case

usually involved replacing the nonterminal with nothing (e.g., moredigits ::⇒ ε).

In problem solving, the base case will be some input for which the problem is so

2The curious should try entering this definition into a Scheme interpreter and evaluating an

application of (f 10). If you get tired of waiting for an output, in DrScheme you can click the

Stop button in the upper right corner to interrupt the evaluation.
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simple we already know the answer. When the input is a number, this is often (but

not always) when the input is zero.

To define a recursive procedure, we need to use an if expression to test if the input

matches the base case input. If it does, the consequent expression is the known

answer for the base case. Otherwise, we enter the recursive case and apply the

procedure again. Each time we apply the procedure we need to make progress

towards reaching the base case. This means, the input has to change in a way that

gets closer to the base case input. If the base case is a small number, and the input

starts greater than that number, one way to get closer to the base case input is to

subtract 1 from the input value with each recursive application.

Here is a procedure that does this:

(define g

(lambda (n)

(if (= n 0)

1

(g (- n 1)))))

Unlike the earlier circular f procedure, if we apply g to a positive number it will

eventually produce an output.

For example, consider evaluating (g 3). When we evaluate the first application,

the value of the parameter n is 3, so the predicate expression (= n 0) evaluates

to #f and the value of the procedure body is the value of the alternate expression,

(g (- n 1)). The subexpression, (- n 1) evaluates to 2, so the result is

the result of applying g to 2. As with the previous application, this leads to the

application, (g (- n 1)), but this time the value of n is 2, so (- n 1) eval-

uates to 1. The next application leads to the application, (g 0). This time, the

predicate expression evaluates to #t and we have reached the base case. The con-

sequent expression is just 1, so no further applications of g are performed. The

value 1 is the result of the application (g 0). This is returned as the result of the

(g 1) application in the previous recursive call, and then as the result of the (g

2) application, and finally as the output of the original (g 3).

We can think of the recursive evaluation as winding until the base case is reached,

and then unwinding the outputs back to the original application. For this pro-

cedure, the output is not very interesting: no matter what positive number we
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apply g to, the eventual result is 1. To solve interesting problems with recursive

procedures, we need to accumulate results as the recursive applications wind or

unwind. Examples 4.3 and 4.4 illustrate recursive procedures that accumulate the

result during the unwinding process. Example ?? illustrates a recursive procedure

that accumulates the result during the winding process.

Example 4.1: Factorial. How many different arrangements are there of a deck

of 52 playing cards? The top card in the deck can be any of the 52 cards, so there

are 52 possible choices for the top card. The second card can be any of the cards

except for the card that is the top card, so there are 51 possible choices for the

second card. The third card can be any of the 50 remaining cards, and so on, until

the last card for which there is only one choice remaining. To determine the total

number of possible arrangements we need to multiply the number of choices for

each card:

52 ∗ 51 ∗ 50 ∗ · · · ∗ 2 ∗ 1

This is known as the factorial function (denoted in mathematics using the excla-

mation point, e.g., 52!). It is defined as:

factorial(n) =

{

1 : n = 0
n ∗ factorial(n − 1) : n > 0

The mathematical definition of factorial is recursive, so it is natural that we can

define a recursive procedure that computes factorials:

(define (factorial n)

(if (= n 0)

1

(* n (factorial (- n 1)))))

We can now determine the number of deck arrangements:

> (factorial 52)

80658175170943878571660636856403766975289505440883277824000000000000

The factorial procedure has structure very similar to our earlier definition of

the useless recursive g procedure. The only difference is the alternative expres-

sion for the if expression: with g we used (g (- n 1)); with factorial we

added the outer application of *: (* n (factorial (- n 1))). Instead
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of just evaluating to the result of the recursive application, we are now combin-

ing the output of the recursive evaluation with the input n using a multiplication

application.

Exercise 4.4. (?) When Karl Gauss was in elementary school, his teacher as-

signed the class the task of summing the integers from 1 to 100 (e.g., 1 + 2 + 3 +
· · · + 100) to keep them busy. Being the (future) “Prince of Mathematics”, Gauss

developed the formula for calculating this sum, that is now known as the Gauss

sum. Had he been a computer scientist, however, and had access to a Scheme

interpreter in the late 1700s, he could have instead defined a recursive procedure

to solve the problem.

Define a recursive procedure, gauss-sum, that takes a number n as its input

parameter, and evaluates to the sum of the integers from 1 to n as its output. For

example, (gauss-sum 100) should evaluate to 5050. �

4.4 Evaluating Recursive Applications

Evaluating an application of a recursive procedure follows the evaluation rules

just like any other expression evaluation. It may be confusing, however, to see

that this works because of the apparent circularity of the procedure definition.

Here, we show in detail the evaluation steps for evaluating (factorial 2).

The evaluation and application rules refer to the rules summary in Section 3.8.

We first show the complete evaluation following the substitution model evaluation

rules in full gory detail, and later consider a subset containing the most revealing

steps. The evaluation rule for an application expression does not specify the order

in which the subexpressions are evaluated. A Scheme interpreter is free to evaluate

them in any order. Here, we choose to evaluate the subexpressions in the order

that is most readable.

1. (factorial 2)

Evaluation Rule 3(a): Application subexpressions

2. (factorial 2)

Evaluation Rule 2: Name

3. ((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 2)

Evaluation Rule 4: Lambda
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4. ((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 2)

Evaluation Rule 1: Primitive

5. ((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 2)

Evaluation Rule 3(b): Application, Application Rule 2

6. (if (= 2 0) 1 (* 2 (factorial (- 2 1))))

Evaluation Rule 5(a): If predicate

7. (if (= 2 0) 1 (* 2 (factorial (- 2 1))))

Evaluation Rule 3(a): Application subexpressions

8. (if (= 2 0) 1 (* 2 (factorial (- 2 1))))

Evaluation Rule 1: Primitive

9. (if (= 2 0) 1 (* 2 (factorial (- 2 1))))

Evaluation Rule 3(b): Application, Application Rule 1

10. (if #f 1 (* 2 (factorial (- 2 1))))

Evaluation Rule 5(b): If alternate

11. (* 2 (factorial (- 2 1)))

Evaluation Rule 3(a): Application subexpressions

12. (* 2 (factorial (- 2 1)))

Evaluation Rule 1: Primitive

13. (* 2 (factorial (- 2 1)))

Evaluation Rule 3(a): Application subexpressions

14. (* 2 (factorial (- 2 1)))

Evaluation Rule 3(a): Application subexpressions

15. (* 2 (factorial (- 2 1)))

Evaluation Rule 1: Primitive

16. (* 2 (factorial (- 2 1)))

Evaluation Rule 3(b): Application, Application Rule 1

17. (* 2 (factorial 1))

Continuing Evaluation Rule 3(a); Evaluation Rule 2: Name

18. (* 2 ((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 1))

Evaluation Rule 4: Lambda

19. (* 2 ((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 1))

Evaluation Rule 3(b): Application, Application Rule 2

20. (* 2 (if (= 1 0) 1 (* 1 (factorial (- 1 1)))))

Evaluation Rule 5(a): If predicate

21. (* 2 (if (= 1 0) 1 (* 1 (factorial (- 1 1)))))

Evaluation Rule 3(a): Application subexpressions

22. (* 2 (if (= 1 0) 1 (* 1 (factorial (- 1 1)))))
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Evaluation Rule 1: Primitives

23. (* 2 (if (= 1 0) 1 (* 1 (factorial (- 1 1)))))

Evaluation Rule 3(b): Application Rule 1

24. (* 2 (if #f 1 (* 1 (factorial (- 1 1)))))

Evaluation Rule 5(b): If alternate

25. (* 2 (* 1 (factorial (- 1 1))))

Evaluation Rule 3(a): Application

26. (* 2 (* 1 (factorial (- 1 1))))

Evaluation Rule 1: Primitives

27. (* 2 (* 1 (factorial (- 1 1))))

Evaluation Rule 3(a): Application

28. (* 2 (* 1 (factorial (- 1 1))))

Evaluation Rule 3(a): Application

29. (* 2 (* 1 (factorial (- 1 1))))

Evaluation Rule 1: Primitives

30. (* 2 (* 1 (factorial (- 1 1))))

Evaluation Rule 3(b): Application, Application Rule 1

31. (* 2 (* 1 (factorial 0)))

Evaluation Rule 2: Name

32. (* 2 (* 1 ((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 0)))

Evaluation Rule 4, Lambda

33. (* 2 (* 1 ((lambda (n) (if (= n 0) 1 (* n (factorial (- n 1))))) 0)))

Evaluation Rule 3(b), Application Rule 2

34. (* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1))))))

Evaluation Rule 5(a): If predicate

35. (* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1))))))

Evaluation Rule 3(a): Application subexpressions

36. (* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1))))))

Evaluation Rule 1: Primitives

37. (* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1))))))

Evaluation Rule 3(b): Application, Application Rule 1

38. (* 2 (* 1 (if #t 1 (* 0 (factorial (- 0 1))))))

Evaluation Rule 5(b): If consequent

39. (* 2 (* 1 1))

Evaluation Rule 1: Primitives

40. (* 2 (* 1 1))

Evaluation Rule 3(b): Application, Application Rule 1
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41. (* 2 1)

Evaluation Rule 3(b): Application, Application Rule 1

42. 3

Value reached

The key to evaluating applications of recursive procedures is the evaluation rule

for the if special form. If the if expression were evaluated like a regular appli-

cation all subexpressions would be evaluated, and the alternative expression with

the recursive call would never finish evaluating! Since the evaluation rule for if

requires that the predicate expression is evaluated and the alternative expression is

not evaluated when the predicate expression is true, the circularity in the definition

ends when the predicate expression evaluates to true. This is the base case of the

recursion, when (= n 0) evaluates to true. This occurs when (factorial

0) is evaluated, and instead of producing another recursive call it evaluates to the

value of the consequent expression, 1.

Exercise 4.5. These exercises test your understanding of the (factorial 2)

evaluation. Try to answer them yourself before reading the remainder of this

section.

a. In step 5, the second part of the application evaluation rule, Rule 3(b), is used.

In which step does this evaluation rule complete?

b. In step 11, the first part of the application evaluation rule, Rule 3(a), is used. In

which step is the following use of Rule 3(b) started?

c. In step 25, the first part of the application evaluation rule, Rule 3(a), is used. In

which step is the following use of Rule 3(b) started?

d. How many times is Evaluation Rule 5 (If) used in evaluating (factorial

2)?

e. In order to evaluate (factorial 3) how many times would Evaluation

Rule 2 be used to evaluate the name factorial?

�

Exercise 4.6. For what input values n with an evaluation of (factorial n)

reach a value? For values where the evaluation is guaranteed to finish, make a
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convincing argument why it must finish. For values where the evaluation does not

finish, explain why. �

Example 4.2: Maximum. In Chapter 3, we saw a procedure, max, that takes

two inputs and evaluates to the greater input. Here, we consider the problem of

defining a procedure that takes as its input a procedure, a low value, and a high

value, and outputs the maximum value the input procedure produces when applied

to an integer value between the low value and high value input. We will name the

inputs f, low, and high. To find the maximum, the find-maximum procedure

should evaluate the input procedure f at every integer value between the low and

high, and produce as output the greatest value found.

To define the procedure, we need to think about this in a way that allows us to

combine results from simpler problems to find the result. For the base case, we

need to identify a case so simple we already know the answer. Consider the case

when low and high are equal. Then, there is only one value to use, and we know

the value of the maximum is (f low). So, the base case is

(if (= low high) (f low) Alternate Expression)

How to we make progress towards the base case? Suppose the value of high is

equal to the value of low plus 1. Then, the maximum value is either the value of

(f low) or the value of (f (+ low 1)). We could select it using the max

procedure:

(max (f low) (f (+ low 1)))

Of course, we can extend this to the case where high is equal to the value of low

plus 2:

(max (f low) (max (f (+ low 1)) (f (+ low 2))))

The second operand for the outer max evaluation is the maximum value of the

input procedure between the low value plus one and the high value input. If

we name the procedure we are defining find-maximum, then this is the result

of (find-maximum f (+ low 1) high). This works whether high is

equal to low plus 1, or low plus 2, or any other value greater than high! Putting

things together, we have our recursive definition of find-maximum:
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(define (find-maximum f low high)

(if (= low high)

(f low)

(max (f low)

(find-maximum f (+ low 1) high)))))

Here are a few examples:

> (find-maximum (lambda (x) x) 1 20)

20

> (find-maximum (lambda (x) (- 10 x)) 1 20)

9

> (find-maximum (lambda (x) (* x (- 10 x))) 1 20)

25

Exercise 4.7. (�) To find the maximum of a continuous function, we need to

evaluate at all numbers in the range, not just the integers. There are infinitely

many numbers between any two numbers, however, so this is impossible. We

can approximate this, however, by evaluating the function at many numbers in the

range.

Define a procedure find-maximum-continuous that takes as input a func-

tion f, a low range value low, a high range value high, and an increment inc,

and produces as output the maximum value of f in the range between low and

high where f is evaluated at low, (+ low inc), (+ low inc inc), (+

low inc inc inc), ..., high.

Here are some examples:

> (find-maximum-continuous

(lambda (x) (* x (- 5.5 x)))

1 10 1)

7.5

> (find-maximum-continuous

(lambda (x) (* x (- 5.5 x)))

1 10 0.0001)

7.5625
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As the value of increment decreases, we expect to find a more accurate maximum

value. �

Exercise 4.8. (?) The find-maximum procedure we defined evaluates to the

maximum value of the input function in the range, but does not provide the input

value that produces that maximum output value. Define a procedure that finds the

input in the range that produces the maximum output value. �

Exercise 4.9. (?) Define a find-area procedure that takes as input a function

f, a low range value low, a high range value high, and an increment inc,

and produces as output an estimate for the area under the curve produced by the

function f between low and high using the inc value to determine how many

points to evaluate. �

4.4.1 The Evaluation Stack

We can see the structure of the evaluation process better if we focus just on the

most revealing stems. Here are the evaluation steps that involve applications of

the factorial procedure extracted from the full evaluation and indented to line

up the steps from each application evaluation:

1. (factorial 2)

17. (* 2 (factorial 1))

31. (* 2 (* 1 (factorial 0)))

40. (* 2 (* 1 1))

41. (* 2 1)

42. 3

In Step 1, we start to evaluate (factorial 2). The final result of this evalua-

tion is found in Step 42. To evaluate (factorial 2), we follow the evaluation

rules, eventually reaching the body expression of the if expression in the factorial

definition. This is Step 17: (* 2 (factorial 1)). To evaluate this expres-

sion, we need to evaluate the (factorial 1) subexpression.

We can think of each of these application evaluations as a stack. A stack has the

property that the first tray pushed on the stack will be the last tray removed—all
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the trays pushed on top of this one must be removed before this tray can be re-

moved. For application evaluations, the elements on the stack are expressions to

evaluate instead of trays. To finish evaluating the first expression, all of its com-

ponent subexpressions must be evaluated. Hence, the first application evaluation

started will be the last one to finish.

At Step 17, the first evaluation is in progress, but to complete it we need the value

resulting from the second evaluation. The second evaluation results in the body

expression, (* 1 (factorial 0)), shown for Step 31. At this point, the

evaluation of (factorial 2) is stuck in Evaluation Rule 3, waiting for the

value of (factorial 1) subexpression. The evaluation of the (factorial

1) application leads to the (factorial 0) subexpression, which must be

evaluated before the (factorial 1) evaluation can complete. In Step 40,

the (factorial 0) subexpression evaluation has completed and produced the

value 1. Now, the (factorial 1) evaluation can complete, producing 1 as

shown in Step 41. Once the (factorial 1) evaluation completes, all the

subexpressions needed to evaluate the expression in Step 17 are now evaluated,

and the evaluation completes in Step 42.

Example 4.3: Euclid’s Algorithm. In Book 7 of the Elements, Euclid de-

scribes an algorithm for finding the greatest common divisor of two non-zero in-

tegers. The greatest common divisor is the greatest integer that divides both of the

input numbers without leaving any remainder. For example, the greatest common

divisor of 150 and 200 is 50 since (/ 150 50) evaluates to 3 and (/ 200

50) evaluates to 4, and there is no number greater than 50 which can divide both

150 and 200 without leaving a remainder.

The modulo primitive procedure takes two integers as its inputs and evaluates to

the remainder when the first input is divided by the second input. For example,

(modulo 6 3) evaluates to 0 and (modulo 7 3) evaluates to 1.

Euclid’s algorithm stems from two properties of integers:

1. If (modulo a b) evaluates to 0 then b is the greatest common divisor of

a and b.

2. If (modulo a b) evaluates to a non-zero integer r, then the greatest

common divisor of a and b is the greatest common divisor of b and r.
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We can define a recursive procedure for finding the greatest common divisor

closely following Euclid’s algorithm:

(define (gcd a b)

(if (= (modulo a b) 0) b

(gcd b (modulo a b))))

The structure of the definition is similar to the factorial definition: the proce-

dure body is an if expression and the predicate tests for the base case. For the gcd

procedure, the base case corresponds to the first property above. It occurs when

b divides a evenly, and the consequent expression is b. The alternate expres-

sion, (gcd b (modulo a b)), is the recursive application. It differs from

the alternate expression in the factorial definition in that there is no outer ap-

plication expression (the * application). We do not need to combine the result of

the recursive application with some other value as was done in the factorial

definition, the result of the recursive application is the final result. Unlike the

factorial and find-maximum examples, the gcd procedure produces the

result in the base case, and no further computation is necessary to produce the

final result. When no further evaluation is necessary to get from the result of the

recursive application to the final result, a recursive definition is said to be tail

recursive.

Exercise 4.10. Show the structure of the applications of gcd in evaluating

(gcd 6 9)

�

Exercise 4.11. (?) Provide a convincing argument why the evaluation of (gcd

a b) will always finish when the inputs are both positive integers. �

Exercise 4.12. (?) Provide an alternate definition of factorial that is tail

recursive. To be tail recursive, the expression containing the recursive application

cannot be part of another application expression.

Hint: define a factorial-helper procedure that takes an extra parameter,

and then define factorial as:
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(define (factorial n) (factorial-helper n 1))

�

Exercise 4.13. (??) Provide an alternate definition of find-max that is tail re-

cursive. �

Exercise 4.14. (???) Provide a convincing argument why it is always possible to

transform a recursive procedure into an equivalent procedure that is tail recursive.

�

4.5 Summary

By breaking problems down into simpler problems we can develop solutions to

complex problems. Many problems can be solved by combining instances of the

same problem on simpler inputs. When we define a procedure to solve a problem

this way, it needs to have a predicate expression to determine when the base case

has been reached, a consequent expression that provides the value for the base

case, and an alternate expression that defines the solution to the given input as an

expression using a solution to a slightly smaller input.

Our general problem solving strategy is:

1. Be optimistic! Assume you can solve it.

2. Think of the simplest version of the problem, something you can already

solve. This is the base case.

3. Consider how you would solve a big version of the problem by using the

result for a slightly smaller version of the problem. This is the recursive

case.

4. Combine the base case and the recursive case to solve the problem.

For problems involving numbers, the base case will often be when the input value

is 0 (but not always, as we saw in the find-maximum value, where the base
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case is reached when the different between two of the input values is 0). The way

the problem size is reduced is by subtracting some value (usually 1) from one of

the inputs. In the next chapter, we introduce more complex data structures. For

problems involving complex data, the same strategy will often work, but we will

have to find other ways to identify a base case and to shrink the problem size.


