
Chapter 7

Time

Time makes more converts than reason.

Thomas Paine

The previous chapter introduced notations for conveniently describing the growth

rates of functions. To use them to understand the time it takes to evaluate a pro-

cedure application, we need to devise a function that predicts the running time

of the evaluation. That function should take as input a number that measures the

size of the output, and produce as output a number that captures the running time.

The first section of this chapter explains how to measure input sizes and running

times. The next six sections analyze some procedures with different growth rates,

from slowest to fastest. The growth rate of a procedure’s running time gives us an

understanding of how the running time increases as the size of the input increases.

The final section presents an extended example.

7.1 Measuring Running Time

To understand the growth rate of a procedure’s running time, we need a function

that maps the size of the inputs to the procedure to the amount of time it takes to

evaluate the application. First we consider how to measure the input size; then,

we consider how to measure the running time.

7-1

7-2 CHAPTER 7. TIME

7.1.1 Input Size

The inputs to our procedures may be many different things: numbers, lists of

numbers, lists of lists of numbers, procedures, etc. Our goal is to characterize the

input size with a single number that doesn’t depend on understanding the details

of the different input types.

We will use the number of characters it takes to write down the input.1 The char-

acters can be from any fixed-size alphabet, such as the 10 decimal digits, or the

letters of the alphabet. Computer scientists typically think about the binary alpha-

bet where there are only two different characters since at the lower levels in the

computer, all data is represented using only two different symbols. The number

of different characters in the alphabet does not matter for our analysis, since we

will be concerned with orders of growth, not with absolute values. Because we

will use the O, Ω, and Θ operators from the previous chapter to describe our cost

functions, we do not need the output to be an absolute measure of the running

time, but instead we need a function that grows at the same rate as the running

time grows when the input size increases.

7.1.2 Worst Case Input

A procedure may have different running times for inputs of the same size. An

extreme example would be a procedure that takes a list as input and outputs the

first positive number in the list:

(define (first-pos p)

(if (null? p)

(error "No positive element found")

(if (> (car p) 0)

(car p)

(first-pos (cdr p)))))

If the first element in the input list is positive, evaluating first-pos requires

very little work. It is not necessary to consider any other elements in the list if the

first element is positive. On the other hand, if none of the elements are positive,

1In Chapter ??, we will see more reasons why this is a good choice.

7.1. MEASURING RUNNING TIME 7-3

the procedure needs to test each element in the list until it reaches the end of the

list (and reports an error).

In our analyses we usually consider the worst case input. This is the input of a

given size for which evaluating the procedure takes the most work. By focusing

on the worst case input, we know the maximum running time for the procedure.

Without knowing something about the possible inputs to the procedure, it is safest

to be pessimistic about the input and not assume any properties that are not known

(such as that the first number in the list is positive for the first-pos example).

In later chapters, we will sometimes also consider the average case input. This

requires understanding the distribution of possible inputs, to consider an “average”

input.

7.1.3 Running Time

To estimate the running time of an evaluation, we need to consider the number

of steps required to perform the evaluation. The actual number of steps depends

on the details of how the interpreter is implemented, and what instructions the

processor provides. Further, not all steps take the same amount of time. Even the

same low-level instruction, such as reading the value in some memory location,

may take different amounts of time depending on where the location is and the

state of the machine. When we analyze procedures, however, we usually don’t

want to deal with these details. Instead, what we care about is how the asymptotic

running time scales with the input size. This means we can count anything we

want as a “step”, as long as each step is the approximately same size (that is, the

time a step requires does not depend on the size of the input).

One possibility is to count the number of times an evaluation rule is used.2 The

amount of work in each evaluation rule may vary slightly (for example, is it more

work to apply the primitive rule or the if-expression rule?) but does not typically

depend on the input size. For this chapter, we will consider all the evaluation

rules to take constant time. This does not include any additional evaluation rules

that are needed to apply one rule. For example, the evaluation rule for application

expressions includes evaluating every subexpression. Evaluating an application

constitutes one work unit for the application rule, plus all the work required to

2In Chapter ??, we will define a “step” more universally

7-4 CHAPTER 7. TIME

evaluate the subexpressions. Because we use the O, Ω, and Θ operators, the actual

time needed for each step does not matter — it is hidden in the factor which is

hidden by the operator. What matters is how the number of steps required grows

as the size of the input grows.

7.2 No Growth

If the running time of a procedure does not increase when the size of the input

increases, it means the procedure must be able to produce its output without even

looking at the entire input. Procedures whose running time does not increase with

the size of the input are known as constant time procedures. Their running time is

in O(1) — it does not grow at all.

We cannot do much in constant time, since we cannot examine the whole input.

A constant time procedure must be able to produce its output by examining only

a fixed-size part of the input. For example, consider the built-in procedure car.

It takes a pair as input and evaluates to the first component of that pair. When it is

applied to a non-empty list, it evaluates to the first element of that list. No matter

how long the input list is, all the car procedure needs to do is extract the first

component of the list. So, the running time of car should be3 in O(1).

Other built-in procedures that involve lists and pairs that should have running

times in O(1) include cons, cdr, null?, and pair?. None of these procedures

should depend on examining more than the first pair of the list.

7.3 Linear Growth

If the running time of a procedure increases by a constant amount when the size

of the input grows by one, the running time of the procedures grows linearly with

3Since we are speculating based on what car does, not examining how car is actually im-

plemented, we cannot say definitively that its running time is in O(1). This would depend on how

the Scheme implementation in question implements car. But, it would be rather shocking for an

implementation to have a running time that is not in O(1). The implementation of car in Sec-

tion 5.1.1 is constant time. Evaluating an application of it involves evaluating a single application

expression, and then evaluating an if-expression.

7.3. LINEAR GROWTH 7-5

the input. If the input size is n, the running time is in Θ(n). If a procedure has

running time in Θ(n), doubling the size of the input will approximately double

the execution time.

Many procedures that take a list as input have linear time growth. A procedure

that takes a list as input, and does something that takes constant time with every

element in the list, has running time that grows linearly with the size of the input

list. Consider the length procedure from Chapter 5:

(define (length p)

(if (null? p) 0 (+ 1 (length (cdr p)))))

The procedure makes one recursive application of length for each element in

the input p. If the input has n elements, there will be n + 1 total applications of

length to evaluate (one for each element, and one for the null). To determine

the running time, we need to determine how much work is involved in each ap-

plication. Evaluating an application of length consists of evaluating its body,

which is an if-expression. To evaluate the if-expression first the predicate expres-

sion, (null? p), must be evaluated. This requires constant time, since it is an

application of the built-in procedure null? which should be implemented with

running time in O(1) — the time it takes to determine is p is null does not depend

on the length of the list p.

If the predicate expression evaluates to true, the consequent expression must be

evaluated. It is the primitive expression, 0, which can be evaluated in constant

time. Otherwise, the alternate expression, (+ 1 (length (cdr p))) is

evaluated. The time required to evaluated the length application is not included

now, since we know there are n + 1 total applications of length to evaluate. It

is usually easiest to account for the work involved in all of the recursive applica-

tions required, so we will consider the work for all the recursive applications of

length later.

The other work needed here is evaluating (cdr p) and evaluating the + appli-

cation. Both of these are constant time operations. So, the total time needed to

evaluate one application of length, excluding the recursive application, is con-

stant. It does not depend on the length of the input list.

There are n+1 total applications of length to evaluate total, so the total running

time is c(n + 1) where c is the amount of time needed for each application (the

7-6 CHAPTER 7. TIME

constant time needed to evaluate the if-expression in length). The set Θ(c(n +
1)) is identical to the set Θ(n), so we can say that the running time for the length

procedure is in Θ(n) where n is the length of the input list. Equivalently, the

running time for the length procedure scales linearly with the length of the input

list. Less formally, sometimes it is phrased as “length is order n”.

Exercise 7.1. Explain why the sum-list, product-list, map, and filter

procedures from Section 5.3.1 all have running times that are linear in the size of

their list inputs. (For map and filter, you should assume the procedure input

has constant running time.) ♦

Exercise 7.2. What is the running time of the append procedure (from Exer-

cise 5.3.3):

(define (append p q)

(if (null? p) q

(cons (car p) (append (cdr p) q))))

Your answer should be in terms of np, the number of inputs in the p input, and nq,

then number of inputs in the q input. ♦

7.4 Quadratic Growth

If the running time of a procedure scales as the square of the size of the input,

the procedure’s running time grows quadratically. Doubling the size of the input

approximately quadruples the running time. The running time is in Θ(n2) where

n is the size of the input.

A procedure that takes a list as input will have quadratic time growth if its evalu-

ation involves going through all elements in the list once for every element in the

list. For example, we can compare every element in a list of length n with every

other element with n(n− 1) comparisons (n elements, each is compared with ev-

ery element besides itself). This simplifies to n2 − n, but Θ(n2 − n) is equivalent

to Θ(n2) (see Exercise 6.3).

The find-matching-pair procedure, defined below, takes as inputs a test

procedure and a list. The test procedure is a procedure that takes two inputs and

7.4. QUADRATIC GROWTH 7-7

produces a Boolean value. If there are any pairs of elements in the list for which

the test procedure evaluates to true, the output of find-matching-pair is a

pair of two elements in the list for which the test procedure evaluates to true.

Here are some example evaluations:

> (find-matching-pair = (list 1 3 2 4 6 1))

(1 . 1)

> (find-matching-pair (lambda (a b) (= a (* b 2)))

(list 2 3 5 7 11 13))

#f

> (find-matching-pair (lambda (a b) (= a (* b b)))

(list 3 4 5 6 7 8 9 10 11))

(9 . 3)

To define find-matching-pair, we first define a procedure that takes two

inputs, a list and a number n, and produces as output a list with the same elements

as the input list except with the nth element removed (where we start counting the

elements in the list from 0):

(define (remove-nth-element lst n)

(if (null? lst)

(error "No element n")

(if (zero? n)

(cdr lst)

(cons

(car lst)

(remove-nth-element (cdr lst)

(- n 1))))))

If the input list is null, there are no elements to remove, so remove-nth-element

evaluates to the error produced by (error "No element"). If the value of

n is 0, we are removing the first element in the list, so the result is the rest of the

list. Otherwise, we should keep the first element of the list, and remove the n−1th

element from the rest of the list.

7-8 CHAPTER 7. TIME

The remove-nth-element procedure has running time in Θ(m) where m is

the number of elements in the input list (we use m here to avoid confusing with

the parameter n). The worst case input is when we are removing the last ele-

ment in the list, when n is (- (length lst) 1). There is one recursive

application of remove-nth-element for every element in the input list. Oth-

erwise, each application has constant running time since it involves applications

of null?, zero?, cdr, cons, cdr, and - (with a constant input), all of which

have running times in O(1).

The find-matching-pair procedure traverses through the elements of the

list in order. For each element, it creates a list of all elements except that element

using remove-nth-element. Then, it compares the current element to every

element in that list. Once it finds a match, that is, a pair of inputs for which the

test procedure evaluates to true, it produces a pair of those elements as the output

and no further recursive calls are needed.

(define (find-matching-pair-helper test orig left others)

(if (null? left)

#f ; no matching pair found

(if (null? others)

(if (null? (cdr left))

#f

(find-matching-pair-helper

test orig (cdr left)

(remove-nth-element

orig (- (length orig)

(length (cdr left))))))

(if (test (car left) (car others))

(cons (car left) (car others))

(find-matching-pair-helper

test orig left (cdr others))))))

(define (find-matching-pair test lst)

(find-matching-pair-helper test lst lst (cdr lst)))

We consider the worst case input in which no pair of elements satisfies the test

7.4. QUADRATIC GROWTH 7-9

procedure. This is the worst case input, since it is necessary to check all pairs of

elements to determine that there is no pair that satisfies the test procedure. In the

best case, the first two elements satisfy the test procedure, and no more elements

need to be tested.

To determine the running time of find-matching-pair-helper, we need

to determine the number of recursive applications, and the amount of work re-

quired for each application. The first two inputs, test and orig, do not change

in the recursive applications. They just keep track of the test procedure and the

original input list. The other two parameters are left, which is the list of ele-

ments remaining to try as the first operand to the test procedure, and others,

which is a list of elements in the original list that remain to be tested with the

current element (the first element of left).

There are two different recursive applications in find-matching-pair-helper.

The first one is done when the others list is empty. This happens after it has

tested the first element of left with every other element in the original list with-

out finding any element that satisfies the test procedure. So, it needs to move on

to checking the next element of left. If there are no more elements (the conse-

quent expression of the (null? (cdr left)) predicate), it evaluates to #f.

It has tried all possible pairs of elements without finding any that satisfy the test

procedure.

Otherwise, the alternate expression applies find-matching-pair-helper

recursively:

(find-matching-pair-helper

test orig (cdr left)

(remove-nth-element

orig (- (length orig)

(length (cdr left)))))

This will happen n times, since each time the new value passed in as the left

parameter is the value of (cdr left). The value passed in as the others

parameter is the result of applying remove-nth-element to the original list

and the number of the current element, which is found by subtracting the length

of the remaining elements from the length of the original list.

As analyzed earlier, the running time of remove-nth-element is in Θ(m)

7-10 CHAPTER 7. TIME

where m is the length of the input list. In this case, the input list is the original in-

put to find-matching-pair, so the running time for the remove-nth-element

application is in Θ(n) where n is the number of elements in the original input list.

The running time for everything else in find-matching-pair is constant.

Other than the recursive applications, it involves applications of null?, cdr,

cons, car, - (with two parameters whose values are always below n), and the

test procedure (which we assume has constant running time). So, the total run-

ning time resulting from these recursive applications is in Θ(n2) — there are n
applications, and each one requires time in Θ(n).

We also need to consider the other recursive application at the bottom of the defi-

nition of find-matching-pair:

(find-matching-pair-helper

test orig left (cdr others))

This occurs up to n − 1 times for each value of left. Every time we apply the

first recursive call, the value of others passed in is a list with n − 1 elements.

As long as there are elements remaining in others, and the test procedure does

not evaluate to a true value, this recursive application is evaluated. It reduces the

length of the others list by one, since it passes in (cdr others) as the new

value of others. Hence, there will be n−1 recursive applications for each value

of left. But, the original value of left is the original input list. So, there are n
different values of left, each of which involves n − 1 evaluations of the second

recursive call, for n(n− 1) = n2 −n total applications. Each application requires

constant time, so the running time of these applications is in Θ(n2 − n) which is

equivalent to Θ(n2).

The total running time for find-matching-pair is the sum of the running

times resulting from the first recursive application, and from the second recursive

application: Θ(n2) + Θ(n2). But, Θ(2n2) is equivalent to Θ(n2), so the running

time of find-matching-pair is in Θ(n2).

Exercise 7.3. Analyze the running time of the reverse procedure from Sec-

tion 5.3.2:

(define (reverse p)

(if (null? p) null

(append (reverse (cdr p)) (list (car p)))))

7.5. POLYNOMIAL GROWTH 7-11

♦

Exercise 7.4.(??) Is it possible to define a reverse procedure that has running

time in Θ(n) where n is the number of elements in the input list? Either define

such a procedure, or explain why it cannot be done. ♦

7.5 Polynomial Growth

A polynomial function is a function that is the sum of powers of one or more

variables multiplied by coefficients. For example,

akn
k + ... + a3n

3 + a2n
2 + a1n + a0

is a polynomial where the variable is n and the coefficients are a0, a1, ..., ak.

Within our O, Ω and Θ operators, only the term with the largest exponent matters.

For high enough n, all the other terms become insignificant. So, the polynomial

above is in Θ(nk) which is equivalent to Θ(akn
k + ... + a3n

3 + a2n
2 + a1n + a0)

for all positive constants a0, . . . , ak.

All of the slower growth rates in this section are polynomials: constant growth is a

polynomial where the highest exponent is 0, linear growth is a polynomial where

the highest exponent is 1, and quadratic grow is a polynomial where the highest

exponent is 2. Of course, we can have procedures where the running time grows

as a higher polynomial.

Next, we show an alternate definition of the find-matching-pair procedure

that has running time in Θ(n3). It uses the get-nth procedure that takes as

inputs a list and an index n, and evaluates to the nth element of the input list

(where the first element is element 0):

(define (get-nth lst n)

(if (null? lst)

(error "No element")

(if (= n 0)

(car lst)

(get-nth (cdr lst) (- n 1)))))

7-12 CHAPTER 7. TIME

The running time of get-nth is in Θ(m) where m is the length of the input list.

In the worst case, n is the length of the list minus 1, so we need to make m − 1
recursive calls to get-nth, each of which requires constant time.

We use get-nth to define find-matching-pair:

(define (find-matching-pair test lst)

(define (find-matching-pair-helper test lst i j)

(if (= i (length lst))

#f

(if (= j (length lst))

(find-matching-pair-helper test lst (+ i 1) 0)

(if (and (not (= i j))

(test (get-nth lst i)

(get-nth lst j)))

(cons (get-nth lst i) (get-nth lst j))

(find-matching-pair-helper

test lst i (+ j 1))))))

(find-matching-pair-helper test lst 0 0))

The first two parameters to find-matching-pair-helper are the test pro-

cedure and the input list, as with our previous definition. The other parameters

are i and j, which are both numbers used to index through the elements of

the list. We need to evaluate the test procedure for every pair of value i and

j that correspond to elements in the input list. As in our analysis of the earlier

find-matching-pair definition, there are Θ(n2) total recursive applications

of find-matching-pair-helper.

In this case, however, the cost of each application is not constant. For each ap-

plication, we may need to evaluate (get-nth lst i) and (get-nth lst

j). Each of these calls has worst case running time in Θ(n) where n is the

length of the input list to find-matching-pair, which is also the input list

to get-nth. On average, the values of i and j will be the average length of the

list = n/2, so the expected running time of each call is also in Θ(n). This means

the total running time for find-matching-pair is in Θ(n3) since there are

Θ(n2) recursive calls, and each one has running time in Θ(n).

7.6. EXPONENTIAL GROWTH 7-13

7.6 Exponential Growth

If the running time of a procedure scales as some power of the size of the input,

the procedure’s running time grows exponentially. When the size of the input

increases by one, the running time is multiplied by some constant factor. The

growth rate of a function whose output multiplies by w when the input size in-

creases by one is wk. A common instance of exponential growth is when the

running time is in Θ(2n). This occurs when the running time doubles when the

input size increases by one. Exponential growth is very fast — if our procedure

has running time that is exponential in the size of the input, it is not possible to

evaluate applications of the procedure on large inputs.

Example 7.1: Power Set. In mathematics, the power set of a set S is the set of

all subsets of S. For example, the power set of {1, 2, 3} is

{{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

The number of elements in the power set of S is 2|S| (where |S| is the number of

elements in S).

Here is a procedure that takes a list as input, and produces as output the power set

of the elements of the list (unlike mathematical sets we allow duplicate values in

our input list, and the resulting list-sets):

(define (powerset s)

(if (null? s)

(list null)

(append

(map (lambda (t)

(cons (car s) t))

(powerset (cdr s)))

(powerset (cdr s)))))

The powerset procedure produces a list of lists as output. Hence, for the base

case, instead of just producing null, it produces a list containing a single ele-

ment, null. In the recursive case, we can produce the power set by appending

the list of all the subsets that include the first element, with the list of all the

subsets that do not include the first element.

7-14 CHAPTER 7. TIME

Evaluating an application of powerset involves evaluating an application of

append, and two recursive applications of (powerset (cdr s)). Increas-

ing the size of the input list by one, doubles the total number of applications of

powerset. This is the case because to evaluate (powerset s), we need to

evaluate (powerset (cdr s)) two times. This involves doing all the appli-

cations of powerset that were needed to evaluate powerset for a list of length

one less than the length of the input list two times. So, the number off applications

of powerset is 2n where n is the length of the input list.

Each application involves applications of map and append (all the other proce-

dures applied in powerset are constant time procedures). Both of these pro-

cedures are linear in the length of the input list (the first input, in the case of

append) (see Section 5.3.3 and Exercise 5.3.3). The length of the input list to

map is the number of elements in the power set of a size n − 1 set: 2n−1. But, for

each application, the value of n is different. The total length of all the input lists

to map over all of the powerset applications on an input list of length n is:

2n−1 + 2n−2 + ... + 21 + 20

which is equivalent to 2n. So, the running time for all the map applications is in

Θ(2n).

The analysis of the append applications is similar. The length of the first input

to append is the length of the result of the powerset application, so the total

length of all the inputs to append is 2n.

Other than the applications of map and append, the rest of each powerset ap-

plication requires constant time. So, the running time required for 2n applications

is in Θ(2n). The total running time for powerset is the sum of the running times

for the powerset applications, in Θ(2n); the map applications, in Θ(2n); and

the append applications, in Θ(2n). Hence, the total running time is in Θ(2n).

Exercise 7.5.(??) We can reduce the number of recursive applications of the

powerset procedure by avoiding the duplicate work, similarly to the fast-fibo

procedure at the beginning of this chapter:

(define (faster-powerset s)

(define (faster-powerset-helper p s)

(if (null? s)

7.6. EXPONENTIAL GROWTH 7-15

p

(faster-powerset-helper

(append

(map (lambda (t)

(cons (car s) t)) p)

p)

(cdr s))))

(faster-powerset-helper (list null) s))

Is the running time of the faster-powerset procedure still in Θ(2n)? ♦

Example 7.2: Primes. A prime number is a number greater than 1 that has

no positive integer divisors other than 1 and itself. To determine if n is a prime

number, we can try dividing n by every number between 2 and n − 1. If we find

a number that divides n with no remainder, then n is not prime. If none of the

numbers divide n with no remainder, then n is prime.

The is-prime? procedure takes a positive integer as its input and outputs true

if and only if the input number is prime:

(define (is-prime? n)

(define (is-prime-helper? n try)

(if (= n try)

#t

(if (zero? (modulo n try))

#f

(is-prime-helper? n (+ try 1)))))

(is-prime-helper? n 2))

In the worst case, n is prime, and all numbers must be attempted before the base

case is reached. The number of recursive applications of is-prime-helper?

is (- n 2) (since we start with try as 2). Each application involves applying

=, zero?, modulo, and + (with a constant value). The applications of zero?

and + (with a constant) are constant time, but the applications of = and modulo

scale with the input size. For now, we will assume they are constant time.4 Hence,

the running time of is-prime? is in Θ(n) where n is the value of the input.

4This could not be the case in reality, however, since the time it takes to compute them scales

with the size of the input. Since they are primitive procedures, we do not know exactly how they

7-16 CHAPTER 7. TIME

As explained in Section 7.1.1, however, we want to know how the running time

scales as the size of the input increases. If the input is a list of constant-sized

elements, the size of the input scales with the number of elements in the list.

When the input is a number, the size of the input scales with the number if digits

in the input. If our numbers are written in base 10, increasing the input size by

one increases the value of the input by a factor of 10. The size of the input is

log v where v is the value of the input. The value of the input, v, can be up to

10d − 1 where d is the number of digits in the input. So, if is-prime? is in

Θ(n) where n is the value of the input, it is in Θ(10d) where d is the size (number

of digits) of the input. Hence, the is-prime? procedure has running time that

grows exponentially in the size of the input.

We could improve our is-prime? implementation by stopping once we reach

a value greater than the square root of the input. This would reduce the number

of recursive applications to Θ(
√

n) where n is the value of the input. The growth

rate is still exponential, however. The square root of Θ(10d) is Θ((
√

10)d) =

Θ(
√

3.16
d
).

Exercise 7.6.(????) Devise a procedure for testing primality whose running time

grows slower than exponentially.5 ♦

Exercise 7.7.(? ? ? ? ?) Devise a procedure for factoring an input value whose

running time grows slower than exponentially.6 ♦

are implemented, but we can imagine implementing them. We could implement = by comparing

the two numbers one digit at a time. The running time of this procedure would scale with the

number of digits. Since n is a number in base 10, the number of digits in n is log n (the largest

d-digit number is 10d − 1). Similarly, we could implement modulo by performing long division

and keeping just the remainder as the final result. The number of steps required to perform long

division scales with the number of digits in the divisor. For each step, we need to perform a

multiplication of a single digit times the dividend. If we perform long multiplication, the number

of steps scales with the number of digits. So, the running time of a straightforward implementation

of modulo would be in log n log m where n is the value of the first input, and m is the value of

the second input.
5Until 2002 it was generally believed that a primality test with running time faster than expo-

nential did not exist. Then, Manindra Agrawal and two undergraduate students working on their

senior thesis projects, Neeraj Kayal and Nitin Saxena, developed such an algorithm and proved

that it was correct. See Folkmar Bornemann, PRIMES Is in P: A Breakthrough for “Everyman”,

Notices of the AMS, Volume 50, Number 5, May 2003; and Manindra Agrawal, Neeraj Kayal and

Nitin Saxena, Primes is in P, Annals of Mathematics, Volume 160, Number 2, September 2004.
6No such procedure is currently known, but no one has proven it can’t be done either. The

7.7. FASTER THAN EXPONENTIAL GROWTH 7-17

7.7 Faster than Exponential Growth

We have already seen an example of a procedure that grows faster than exponen-

tially in the size of the input: the fibo procedure at the beginning of this chapter!

Evaluating an application of fibo involves Θ(φn) recursive applications where

n is the value of the input parameter. As we discussed in the is-prime? ex-

ample, the size of a numeric input is the number of digits needed to express it,

so the value n can be as high as 10d − 1 where d is the number of digits. Hence,

the running time of the fibo procedure is in Θ(φ10
d

). This is why we are still

waiting for (fibo 60) to finish evaluating.

7.8 Summary

The O, Ω, and Θ notations for measuring orders of growth provide a convenient

way of understanding the cost involved in evaluating an application of a procedure.

Because the speed of computers varies, and the exact time required for a particular

application depends on many details, the most important property to capture is

how the amount of work required to evaluate the procedure scales with the size of

the input.

Procedues that can produce an output only touching a fixed amount of input re-

gardless of the input size have constant (O(1)) running times. Procedures whose

running time increases by a constant amount when the input size increases by one

have linear (in Θ(n)) running times. Procedures whose running time quadruples

when the input size doubles have quadratic (in Θ(n2)) running times. Procedures

whose running time is multiplied by a constant factor when the input size in-

creases by one have exponential (in Θ(kn) for some constant k) running times.

If a procedure has exponential running time, it can only be evaluated for small

inputs.

security of the most widely used public-key cryptosystems, including those that form the basis of

most secure Internet transactions, depends on no such procedure existing.

10-18 CHAPTER 7. TIME

